.

TETRAHEDRON REPORT NUMBER 307

RECENT ADVANCES IN THE STAUDINGER REACTION

YURI G. GOLOLOBOV*

A. N. Nesmeyanov Institute of Organo-element Compounds, Academy of Sciences, 117813 Moscow, Vavilov St., 28, Russia

and

LEONID F. KASUKHIN Institute of Bioorganic Chemistry and Oil Chemistry, Academy of Sciences, 252660 Kiev 660, Murmanskaya St., 5, Ukraine

(Received 23 July 1991)

CONTENTS

1.	Introduction	354
2.	The classical Staudinger reaction 1 2.1. Reactants 1 2.2. Intermediate phosphazides in the Staudinger reaction 1 2.3. Mechanism of the Staudinger reaction 1	.354 .354 .358 .361
3.	Interaction of azides with phosphorus of various coordinations and valencies 1 3.1. One-coordinate phosphorus 1 3.2. Two-coordinate phosphorus 1 3.3. High-valent three-coordinate phosphorus 1 3.4. Four- and five-coordinate phosphorus 1	.362 .362 .364 .368 .368
4.	Imination of organo-element compounds with azides. 1 4.1. Group IV elements. Germanium and tin 1 4.2. Group V elements. Arsenic, antimony, tantalum, and vanadium 1 4.3. Group VI elements 1	369 .369 .370 .371
5.	Rearrangements of iminophosphoranes 1 5.1. Imide-amide rearrangements 1 5.2. Imide-imide rearrangements 1 5.3. Imide-ylide rearrangements 1 5.4. Imide-phosphorane rearrangement 1 5.5. Prototropic rearrangements 1	372 372 374 374 375 375
6.	Reactions of iminophosphoranes 1 6.1. Hydrolysis 1 6.2. Alkylation 1 6.3. Cyclization reactions 1 6.4. Insertion reactions 1 6.5. Oxidation and reduction 1 6.6. Substitution reactions 1	376 376 .380 .381 .386 .387 .388
7.	Aza-Wittig reaction 1 7.1. Intermolecular aza-Wittig reaction 1 7.2. Intramolecular aza-Wittig reaction 1 7.3. Cyclization of aza-Wittig products 1	.389 .390 .391 .394
8.	Conclusion	400
	References	400

1. INTRODUCTION

Ten years ago we published the first review¹ on the Staudinger reaction : the imination reaction of tervalent phosphorus derivatives with organic azides discovered in 1919.² For the past decade, extensive investigations have been carried out in this field. They explored the concept of the reaction and considerably widened its synthetic utility. In addition to $\lambda^3 \sigma^3$ phosphorus compounds, compounds containing P atoms of different coordinations and valencies as well as other organoelement compounds were found to undergo the Staudinger imination. The molecular structures of intermediate phosphazides in the classical Staudinger reaction have now been unequivocally established. Some new rearrangements of imination products have been observed and studied. Impressive successes were also achieved in the synthesis of heterocyclic compounds especially via the aza-Wittig reaction.

2. THE CLASSICAL STAUDINGER REACTION

The Staudinger reaction in its classical form is a two-step process involving the initial electrophilic addition of an azide to a P^{iii} centre followed by dinitrogen elimination from the intermediate phosphazide A giving the iminophosphorane **B**.

$$\frac{1}{P} + N_3 R \longrightarrow \frac{PN_3 R}{A} \longrightarrow \frac{P}{B} NR + N_2$$
(1)

Usually, the imination proceeds smoothly, almost quantitatively, without noticeable formation of any side products. The phosphorus and azide components of the Staudinger reaction were previously characterized in detail.¹ In the following section the new reagents recently studied in this reaction are briefly surveyed.

2.1. Reactants

2.1.1. Phosphorus(III) compounds. In Chart 1 some typical examples selected from studied

$$R_{2}P-R' (R_{2}N)_{2}PI R_{2}N-PF_{2} (EtO)_{2}P-OCR=CR_{2}'$$

$$1 2 3 4$$

$$(EtO)_{2}P-N-P-OEt Ph_{2}P(CH_{2})_{n}PPh_{2} (Et_{2}N)_{2}P(CH_{2})_{4}P(NEt_{2})_{2}$$

$$5 6 7$$

$$n = 1,2$$

$$(EtO)_{2}P-X-P(OEt)_{2} (-CHCH_{2}-)_{n}$$

$$8 X = CH_{2}, NPh PPh_{2} 9$$

$$Chart 1.$$

classes of acyclic tervalent phosphorus compounds are presented. Among them are asymmetric phosphines³⁻⁷ 1, halogenated phosphines,⁸⁻¹² 2^8 and 3,¹¹ phosphorus acid esters, vinyl esters,¹³⁻¹⁵ amides^{16,17} 4^{15} and 5,¹⁷ as well as their bisphosphorus analogues, 6,^{18,19} 7,²⁰ 8,^{21,22} and polymeric phosphines 9.²³

The cyclic derivatives of three-coordinate phosphorus also constitute an extensive group (Chart

2) including dioxazaphosphocine²⁴ 10, phosphatrane²⁵ 11, phospha-adamantanes^{26,27} 12, dioxaphosphorinanes²⁸ 13, diazaphosphorines²⁹ 14, phosphole dimers³⁰ 15, benzodioxaphospholes^{31,32} 16, dioxaphospholanes³³⁻³⁶ 17³³ and 18,³⁵ diazaphospholidines³⁷ 19, diazaphospholidinium salt³⁸ 20, diazaphosphole^{39,40} 21, oxadiazaphospholes⁴¹ 22, diazadiphosphetidine⁴² 23, diazaphosphetidinones⁴³ 24, and others. It is of interest that diazaphosphetidinethione 25, the sulfur analogue of 24, is iminated with trimethylsilyl azide at thione carbon but not at the phosphorus(III) site.⁴⁴

2.1.2. Azides. In the Staudinger reaction, alkyl, aryl, arenesulfonyl, acyl, phosphoryl or triorganyl azides are traditionally used as azide components. This group has been considerably widened. In Chart 3 some new examples are shown. They comprise azetidinyl azide⁴⁵ 26, cyanazide⁴⁶ 27, sulfonyl azides⁴⁷⁻⁵⁰ 28,⁴⁷ 29,⁴⁸ and 30,⁴⁹ phosphoryl azides 31,⁵¹⁻⁵⁶ 32,⁵⁷ and 33,^{57,58} azidophosphonium salt 34,⁵⁹ azidospirophosphoranes 35,⁵⁸ 36,^{60,61} and 37,⁶² tantalum tetrachloride azide 38,⁶³ and the azidoborane 39.⁶⁴

Nitroyl azides, e.g. 40 (Chart 3), form an interesting subgroup which is used for preparation of spin labels by the Staudinger reaction, in order to study various biological systems.⁶⁵ Azido-

Y. G. GOLOLOBOV and L. F. KASUKHIN

pyridines⁶⁶ and azidopyridazines⁶⁷ having an azido-group incorporated into a tautomeric tetrazole cycle undergo the Staudinger conversion (eqn 2).⁶⁶

It was proposed to use hydrazines, $RNHNH_2$, as the precursors of the azide components in the synthesis of iminophosphoranes. The hydrazines are catalytically converted to azides (on clay-supported ferric nitrate) and then, without isolation, condensed with phosphorus(III) reagents.^{68,69} A similar approach to imination with azides (RO)₂P(O)N₃ *in situ* was utilized in a system presented in equation (3) where the combination of the Atherton–Todd and Staudinger reactions was realized in a one-pot version.⁷⁰

$$(RO)_{2}P(O)H + CCl_{4} \longrightarrow (RO)_{2}P(O)Cl$$

$$(RO)_{2}P(O)Cl + NaN_{3} \longrightarrow (RO)_{2}P(O)N_{3}$$

$$(RO)_{2}P(O)N_{3} + (R'O)_{3}P \longrightarrow (RO)_{2}P(O) - N = P(OR')_{3}$$

$$(RO)_{2}P(O)H + (R'O)_{3}P + CCl_{4} + NaN_{3} \longrightarrow (RO)_{2}P(O) - N = P(OR')_{3}$$

$$(3)$$

There are numerous examples of imination with bis-, tris-, and polymeric azides (Chart 4).

Depending on reactant ratios, one or two N_3 groups of a bisazido component can participate in the reaction. In the last case, as shown for bisazide **41**, the imination can lead to a cyclic product.⁷¹

$$\underbrace{\overset{\text{MeOOC}}{\text{NC}}}_{\text{NC}} \underbrace{\overset{\text{N}_3}{\text{N}_3}}_{\text{NC}} + \underbrace{\overset{\text{Ph}_2\text{P}}{\text{Ph}_2\text{P}}}_{\text{Ph}_2\text{P}} \xrightarrow{\text{MeOOC}}_{\text{NC}} \underbrace{\overset{\text{N}=\text{P}}{\text{NC}}}_{\text{NC}} \underbrace{\overset{\text{N}=\text{P}}{\text{Ph}}}_{\text{Ph}}$$
(4)

2.1.3. Azidophosphines. Compounds of this type contain in the same molecule a P^{III} atom and an azido group. Therefore, in the Staudinger reaction, they can act as bifunctional reagents. Such compounds are usually prepared by the exchange reaction between appropriate phosphochloridites and Me₃SiN₃ or metal azides.⁷⁷ Chart 5 illustrates some representatives of this chemical class, i.e. 47–53.

The thermal autocondensation of azidophosphines was supposed to proceed through an intermediate phosphonitrile, $R_2 \stackrel{P}{P} = \bar{N}$, providing polyphosphazenes.⁸² In the presence of another monofunctional azide, the usual Staudinger imination of the P^{III} site takes place.⁸³

$$(\text{Et}_{2}\text{N})_{2}P + N_{3}R \longrightarrow (\text{Et}_{2}\text{N})_{2}P = NR$$

$$N_{3} \qquad N_{3}$$

$$\frac{54}{54} \qquad R = Ph, \text{ Tos}$$
(5)

In a similar fashion the azidophosphites 48,⁵⁷ 50,⁸⁰ and $(i-Pr_2N)_2PN_3$ (55)⁸⁴ react with phenyl azide. Compound 49 does not, however, interact with PhN₃.⁵⁷ In the system 55, Me₃SiN₃, the phosphorus imination under thermal conditions is not observed, but on uv irradiation it does proceed, presumably by a nitrene mechanism.^{84,85}

In equation 6, the azidophosphite **49** acts as an azido component.⁷⁹ However, the azides **48** and **54** do not react with triethyl phosphite.^{57,79}

The behavior of these bifunctional reagents in the Staudinger reaction is presumably determined by their relative phosphorus nucleophilicity and azide nitrogen electrophilicity.

2.2. Intermediate phosphazides in the Staudinger reaction

The intermediate formation of phosphazides in the Staudinger reaction is well documented. Many phosphazides have been isolated and characterized (ref. 1). In Table 1 some recent examples are listed. The unusual phosphazide 63 in Table 1 was synthesized as in equation (7).⁹¹ There have

Com- pound	Phosphazide	Yield, %	M.p. °C (dec)	Ref.
<u>56</u>	$ph_3PN_3 \xrightarrow{C1 C1} N$ C1 C1	88	9698	86
<u>57</u>	Ph3PN3 NN2 NNN	88	98-100	66
<u>58</u> 8 580	$(0 N)_{3}PN_{3} + X = N0_{2}$ x = Br	89 90	155–156 186–189	87 88
<u>59</u>	(0 N) 3 PN 3 K	96	147-148	89
<u>60</u>	$ \begin{array}{c} $	68	163-165	25
<u>61</u>	Ph ₃ PN ₃ C=CCN PhHN COOMe	68	104	90
<u>62</u>	Ph ₃ PN ₃ C=C ^{COOMe} Ph ₃ PN ₃ C=C ^{COOMe}	76	62	71
<u>63</u>	t-Bu ₂ P ⁻ N ₃ Ph + ^{NMe} _{CH} N ₃ Ph ⁺ CH N ₃ Ph ^{NMe} ₂	70	-	91

Table 1. Phosphazides

been many reports on the spectral detection (³¹P, ¹⁵N, ¹³C NMR) of intermediate phosphazides in the Staudinger process (refs 66, 73, 84, 92).

$$t-Bu_{2}P-CH(NMe_{2})_{2} \xrightarrow{PhN_{3}} \begin{bmatrix} N_{3}Ph & N_{3}Ph \\ U-Bu_{2}P-CH(NMe_{2})_{2} \xrightarrow{PhN_{3}} \\ t-Bu_{2}P-CH(NMe_{2})_{2} \xrightarrow{PhN_{3}} \\ t-Bu_{2}P \xrightarrow{N} \\ t-Bu_{2}P \xrightarrow{N} \\ Ph-N=N & NMe_{2} \\ \hline \\ \frac{63}{5} \end{bmatrix} \xrightarrow{PhN_{3}}$$
(7)

2.2.1. Molecular structure of phosphazides. The structure of phosphazides was a point of protracted controversy (ref. 1). Recently investigators have succeeded in elucidating the important features of the molecular structure for five phosphazides by X-ray crystallography.^{87,89,93-96} The first phosphazide investigated by this method was $Ph_3PN_3C_6H_4Me-p$;⁹⁵ however, it was studied as a ligand in the metal complex $WBr_2(CO)_3(Ph_3PN_3C_6H_4Me-p)$.

Selected X-ray structural data for phosphazides are listed in Table 2. It was found that the fragment PN_3 in a phosphazide is acyclic, that is the azide is added to the P^{III} site by its terminal nitrogen atom. The chain PN_3C is nearly planar and has the (*E*)-configuration with respect to the central N^1-N^2 link which exhibits, partially, double bond characteristics. In the sequence **58**, **64**, **65**, and **66** the N^1-N^2 bond order decreases (with increase in length) and the thermal stability of the molecules is reduced. This trend is partly determined by the fact that for elimination of nitrogen from a phosphazide, the rotation of its terminal groups around this bond is required (eqn 8).

The phosphorus atoms in phosphazides have partial phosphonium character. The negative charge from the N^3 atom is delocalized to the aromatic ring (R") which in compounds **58a**, **64**, **65**, and **67** is twisted out of the plane PN₃C by 32.2°, 9°, 7.8° or 11°, respectively. The phosphorus positive charge in all cases is delocalized much less effectively.

$\frac{\operatorname{RR}_{2}^{P}}{\sqrt{n^{2}}} = n^{2} \xrightarrow{\operatorname{RR}_{2}^{P}} n - n \xrightarrow{\operatorname{RR}_$											
Com-					Bond lengths (Å)			Angles (°)			Ref.
pound	R	R'	R''	P-N ¹	N ¹ -N ²	^{N²-N³}	N ³ -C	pn ¹ n ²	N ¹ N ² N ³	N ² N ³ C	
<u>58</u> a	0N	0N-	2,4,6-(0 ₂ N) ₃ C ₆ H ₂	1.638	1.299	1.317	1.368	119.1	112.0	112.2	87
<u>64</u>	Ph	Ph	^{2-ноосс} 6 ^н 4	1.651	1.328	1.279	1.413	109.52	112.97	114.80	89
<u>65</u>	0_N-	Et ₂ N	Ph	1.623	1.342	1.273	1.423	114.77	112.6	112.3	93
<u>66</u>	Me ₂ N	Me ₂ N	но(сн ₂) ₃	1.615	1.375	1.256	1.472	111.7	112.1	111.2	94
<u>67</u> *	Ph	Ph	4-MeC6 ^H 4	1.672	1.365	1.280	1.424	112.9	103.8	116.3	95

Table 2. Selected X-ray structural data for phosphazides

* In the complex WBr₂(CO)₃(Ph₃PN₃C₆H₄Me-p).

2.2.2. Chemical properties of phosphazides. pK_a Measurements have shown that phosphazides 68 are less basic than the corresponding iminophosphoranes 69.⁹⁷

As the parameters ρ in the Hammett correlations of pK_a values for **68** are substantially smaller than for **69**, it was concluded that for the phosphazides **68**, protonation occurs at the N atom adjacent to phosphorus.⁹⁷

In a chemical respect, phosphazides have been inadequately studied. Only their thermal conversion into iminophosphoranes by the mechanism in equation 8 was investigated in detail.¹ The sensitivity of thermolysis kinetics for the phosphazide **56** (Table 1) to a solvent polarity is rather weak.⁸⁶ This is perhaps due to the low degree of charge separation in the transition state (eqn 8).

$$\Rightarrow_{P_{N=N_{N-R}}}^{+} \left[\Rightarrow_{P_{N-N-R}}^{S^{+}} \right]^{\neq} \xrightarrow{N \equiv N'} \Rightarrow_{P=N-R}$$
(8)

Weak acids, for example picric acid, give complexes with phosphazides in solution. This was utilized in the kinetic studies of the Staudinger reaction.⁹⁸ A stable complex of this kind, **70**, was isolated, but its structure was not determined.⁹⁶ Strong acids, such as trifluoroacetic acid, cleave phosphazides **68** giving anilines and triphenylphosphine oxide.⁹⁹

The negative charge at N(Ar) atom in phosphazides implies the possibility of N-alkylation. Indeed, such a reaction has been realized (eqn 9). 96,100

It proceeds in a regio- and stereo-specific manner with retention of the nitrogen triad. The molecular structure of the product **71a** was confirmed by X-ray analysis.¹⁰⁰

Recently, the first example of intramolecular cyclization of an intermediate phosphazide was observed.^{101,102}

2.3. Mechanism of the Staudinger reaction

The main features of the Staudinger reaction mechanism have been discussed.¹ The imination is a two-step process which is started by electrophilic addition of the azide to tervalent phosphorus. The addition is not hindered, at least not by substituents at phosphorus, and its rate is controlled by the inductive influence of the substituents and by the azide electrophilicity.

The relation between the rates of the phosphazide formation (the second-order rate constant k_1) and its intramolecular decomposition (the first-order rate constant k_2) determines the overall kinetic order for the process (eqn 11).

2.3.1. Stereochemical aspects. For a number of phosphazides it was established¹ that the Staudinger imination proceeds with retention of the initial phosphorus stereoconfiguration. This finding was further confirmed for new examples including the optically active phosphines 72,^{103,104} 73,¹⁰⁴ and 74^{105,106} (Chart 6). For the first time, the chiral esters of phosphorus(III) acids, e.g. 75¹⁰⁷ and 76,¹⁰⁸ were also used in such studies.

The *cis-trans* isomerization observed during imination of the diazaphosphole 77 was explained by pseudorotation of the intermediate spiroadduct 78 (Scheme 1).¹⁰⁹

Scheme 1.

Table	3.	Rat	e con	stants	k_1	for	imin-
ation	of	tri(n-bul	tyl)pho	ospl	hine	with
alkyl	az	ides	RN ₃	(benze	me,	30°	C) ¹¹³

-		
R	E _Š (R)	k ₁ 10 ² , M ⁻¹ s ⁻¹
n-Bu	-0.59	6.8
i-Pr	-0.85	2.4
cC6H11	-1.19	2.5
s-Bu	-1.53	2.2
t-BuCH ₂	-1.94	4.3

The sterically unhindered behavior of a phosphorus site on azide attack (the first step in eqn 11) is reflected in a low sensitivity of the rate constants k_1 to the bulk of substituents at the P atom, in particular, adamantoxyl,^{110,111} isoalkoxyl,³⁶ and *ortho*-substituted phenoxyl groups.¹¹² Some quantitative data on the steric shielding of the N₃ group in azides have also been obtained. Steric hindrance was shown not to be crucial by comparing the values of the rate constants k_1 for imination of tri(n-butyl)phosphine with alkyl azides (Table 3).¹¹³

It seems likely that the efficiency of intermediate phosphazide stabilization by steric crowding at a nitrogen terminus, at least with *ortho*-substituted aryl groups, is rather small.^{86,88}

2.3.2. Electronic effects of substituents at phosphorus. The influence of substituents at phosphorus on the rate of the first imination step is mainly determined by their inductive effects.¹ This is reflected in the correlation equations (12a, b) where k_1 is the rate constant for imination of a phosphorus reagent with phenyl azide under the standard conditions (THF, 20°C) and $\Sigma \sigma_1$ is a sum of inductive parameters of the three groups attached to phosphorus.¹¹⁴

$$\log k_1 = 2.274 - 5.656\Sigma \sigma_1 \tag{12a}$$

$$\Sigma \sigma_1 = 0.405 - 0.176 \log k_1 \tag{12b}$$

The relationship in equation 12b was used to calculate σ_1 values for various groups at a phosphorus(III) atom.^{110,114,115} In Table 4 some new σ_1 constants evaluated by this method are summarized, in addition to the previously reported¹ list.

It may be noted that the inductive effect of vinyloxy radicals (entries 5–17, Table 4) is rather conservative with respect to electron-withdrawing substituents at α - or β -carbon and remains fairly constant, $\sigma_1 = 0.50 \pm 0.03$. The bidentate 1,2-dioxy-substituents (entries 18–21, Table 4) exhibit considerably more inductive electron-withdrawing ability than a pair of corresponding alkoxy groups.

The correlation similar to that in equation 12b was also found in the system RPF_2 -PhN₃. This correlation has been used to evaluate the Kabachnik parameters σ_1^P for a variety of amino-substituents at phosphorus.¹²

3. INTERACTION OF AZIDES WITH PHOSPHORUS OF VARIOUS COORDINATIONS AND VALENCIES

3.1. One-coordinate phosphorus

Imination of phospha-alkyne-azides does not proceed. Instead, the regiospecific cycloaddition of the azide takes place giving triazaphospholes (eqn 13) (for review, see ref. 117).

Table 4. Substituent σ_1 values determined by eqn (12b)

Entry	Substituent	٤ĭ	Ref.
1	-0C8H17-n	0.28	*
2	-00,2H25-n	0.28	+ .
3	-OCH_CF_CF_H	0.38 ± 0.02	*
4	-OCH=CH2	0.43	15
5	$-OC(Ph) = CH_2$	0.46 ± 0.02	15
6	-OC=CH2	0.50	15
	P(0)(OEt)		
7	$-OCH=CHP(0)(OEt)_2$	0.47	15
8	-OC(Me)=CHCOOEt	0.49	15
9	$-OC(CF_3) = CHCOOEt$	0.53	*
10	-OC(CH2C1)=CHC1	0.50	15
11	-OC(Ph)=CHC1	0.54 ± 0.01	15
12	-OC(Bu-t)=CHC1	0.51 ± 0.02	15
13	-OCH=CC12	0.50 ± 0.01	15
14	-0C(Me)=CC1 ₂	0.52 ± 0.01	15
15	$-OC(Ph) = CCl_2$	0.54 ± 0.02	15
16	$-0C(Bu-t)=CC1_2$	0.51 ± 0.04	15
17	-OC(Me)=C(COOEt) ₂	0.51	15
18	-OCH2CH2O-	0.76 ± 0.02	36
19	-OCH(Me)CH ₂ O-	0.77 ± 0.02	36
20	-OCH(Me)CH(Me)O-	0.75	36
21	-OC(Me) ₂ C(Me) ₂ O-	0.65 ± 0.01	36
22	-N_0	0.11	88
23	-N(Me)COPh	0.48	*
24	-n_	0.44	*
25	-N	0.48	*
26	-N(Ph)N=CMe ₂	0.31 ± 0.02	116
27	$- \bigcirc \mathbf{Mn}(\mathbf{CO})_{3}$	0,18	*
28	-P(S)(OEt) ₂	0.35	21

* Our unpublished results.

$$P \equiv C-R + R'N_{3} \longrightarrow P = \begin{pmatrix} R'-N & N \\ P = \begin{pmatrix} R \\ R \end{pmatrix} \\ R = Me^{118}, t-BuCH_{2}^{119}, & Me & 119, & Me & 119, i-Pr^{119}, \\ t-Bu^{120-122}, 1-Ad^{123}; \\ R' = H, Me, CH_{2}CN, CH_{2}Ph, CH_{2}SiMe_{3}, t-Bu, HC=CH_{2}, Ph, 1-C_{10}H_{7} \end{pmatrix}$$
(13)

The simplest representative, phosphaethyne, reacts with cyanogen azide in the gaseous phase exchanging its hydrogen atom for a cyano group.¹²⁴

$$P = CH + N_3 CN \xrightarrow{\Delta} P = C - CN$$
(14)

3.2. Two-coordinate phosphorus

3.2.1. *Phospha-alkenes*. Phospha-alkenes couple with organic azides either by the Staudinger or by the [2+3]cycloaddition reaction (see reviews^{125,126}). The oxidative imination leading to three-coordinate iminophosphoranes is illustrated in Schemes 2 and 3.

Formation of the cyclic product 80 in the reaction of the phosphaethylene 79 with phenyl azide (Scheme 4)¹³² is indicative of a phosphazide intermediate.

Compounds 81 (Scheme 5) 133,134 are believed to react with azides by a similar mechanism. The intermediate cycloadduct 82 decomposes giving imines 83 and the oligomeric cyclophosphines.¹³⁵

Scheme 3.

Cl Me₃Si Me₃Si Ph, PhCH, 136 Ph Me, NCCH₂, PhCH₂ Cl Measi 137 EtOOCCH₂, Ph Mes Ph Ph Tos 132 Scheme 6.

Scheme 6 illustrates the regiospecific 1,3-dipolar cycloaddition of phospha-alkenes with azides.^{132,136,137} The orientation of the azide fragment in the cycloadduct 84 is opposite to that of the Staudinger product 80 (Scheme 4b). Elimination of trimethylchlorosilane from triazaphospholes 84 ($R^1 = Cl$, $R^2 = Me_3Si$) leads to novel heterocyclic products 85 containing a two-coordinate phosphorus atom. 136, 137

The product of 1,3-dipolar cycloaddition can eliminate nitrogen to give, finally, diazadiphosphetidine.¹³⁸

$$R-P=C(SiMe_3)_2 \xrightarrow{Me_3SiN_3} Me_3Si_N N_N N_R P-C(SiMe_3)_2 -N_2$$

$$\left[R-P \xrightarrow{NSiMe_3}_{C(SiMe_3)_2} \xrightarrow{(Me_3Si)_2C}_{R} \xrightarrow{N}_R \xrightarrow{N}_R \xrightarrow{N}_R \xrightarrow{SiMe_3}_{R} (15)$$

$$R = Me_3SiC \equiv C$$

3.2.2. Phosphazenes and diphosphenes. The interaction between azides and two-coordinate phosphorus compounds bearing P=N bond proceeds through a [2+3]cycloaddition step (see reviews^{139,140}). The resultant cycloadduct **86** (eqn 16) decomposes with nitrogen elimination to give diiminophosphorane 87 identical with a Staudinger product.^{141,142} However, there is no evidence for the Staudinger imination of the phosphazenes. They are also absent for other systems^{64,143} where only end products of the type 87 were isolated and identified.

The two-coordinate phosphorus atom in the triazaphosphole **88** reacts with the hydroxyl group but not the azido group of the azidoalcohol **89**.¹⁴⁴

The only example of a reaction between an azide and a compound having P=P bound twocoordinate phosphorus was briefly reported without any comments on the reaction mechanism.¹⁴⁵

$$(Me_{3}Si)_{2}N-P=P-N(SiMe_{3})_{2} \xrightarrow{Me_{3}SiN_{3}} (Me_{3}Si)_{2}N-P(N(SiMe_{3})_{2})$$
(18)

3.2.3. *Phosphenium ions*. Phosphenium ions have been recently intensively studied (for review see ref. 146): they are smoothly and quantitatively iminated with azides. The betaine **90** (eqn 19)^{147,148} was the first such representative investigated in this reaction. It reacts with two equivalents of an azide, the second molecule R'N₃ being added across P==N bond of the intermediate imine **91** giving a spiroheterocycle **92**.

The cations 93 react with one equivalent of an azide yielding the iminophosphonium cations 94 (Scheme 7).

The reaction of chlorophosphenium ions with trimethylsilyl azide (Scheme 8)¹⁵² is more complex because an exchange process precedes the imination.

The high reactivity of phosphenium ions toward azides is somewhat unexpected because in its classical form the Staudinger reaction is initiated by azide electrophilic attack on phosphorus. However, it is probable that the formally vacant 3p orbital on the P⁺ site, as well as its known 'amphoterism' in reactions with Lewis acids and bases, promotes nucleophilic attack of azides at electrophilic phosphorus. In line with this suggestion, kinetic studies¹⁵³ of the reaction between $(Et_2N)_2P^+AlCl_4^-$ and substituted phenyl azides $(CH_2Cl_2 \text{ solution}, 7^\circ C)$ shows that the electron-withdrawing substituents in the azides considerably reduce the reaction rate as evidenced by the linear Hammett relationship

$$\log k_1 = -2.22\sigma - 1.26 \tag{20}$$

Furthermore, the kinetic results¹⁵³ suggest a reactive intermediate formation, presumably of the phosphazide type.

The recent communication¹⁵⁴ will encourage the revision of mechanistic opinion regarding phosphenium ion iminations. N. Burford *et al.*¹⁵⁴ have convincingly shown that the end product of the reaction between $(R_2N)_2P^+AlCl_4^-$ (R = Et, i-Pr) and PhN₃ is a Lewis acid-base complex 95 with a covalent P-Cl bond. This contrasts with the conventional view-point (Scheme 7).

3.3. High-valent three-coordinate phosphorus

Such compounds react with azides by the [2+3]cycloaddition mechanism with a multiple P–N or P–C bond participation. The corresponding examples for the betaine 91 and diimides 96 are shown in equations 19 and 21,¹⁴² respectively.

$$R_{2}^{1}N-P \bigvee_{NR^{2}}^{NR^{2}} + R^{3}N_{3} \longrightarrow R_{2}^{2}N + N - N \\ \frac{96}{R^{1}} = i - Pr, Me_{3}Si; R^{2} = t - Bu, Me_{3}Si; R^{3} = Et, t - Bu$$
(21)

The reaction of λ^3 -phosphinocarbene 97 with trimethylsilyl azide also proceeds in a similar fashion.¹⁵⁵

$$(R_{2}^{1}P-\ddot{C}R^{2} \leftrightarrow R_{2}^{1}\dot{P}=CR^{2} \leftrightarrow R_{2}^{1}P\equiv CR^{2}) \xrightarrow{Me_{3}SiN_{3}} \xrightarrow{Me_{3}Si} N \xrightarrow{N} N \xrightarrow{A}$$

$$\xrightarrow{97}$$

$$Me_{3}Si-N \xrightarrow{N_{2}} R_{2}^{1}P=C-R^{2} \xrightarrow{R^{1}} = i-Pr_{2}N, R^{2} = Me_{3}Si$$

$$(22)$$

3.4. Four- and five-coordinate phosphorus

Among phosphorus compounds bearing P atom in coordination higher than 3, the imination with azides has been observed only for the phosphoranide 98.¹⁵⁶

$$\frac{Ph}{C1} \sum_{CN}^{P} Et_4 N^+ \frac{RN_3}{C1} \sum_{NR}^{Ph} \sum_{C1}^{P} Et_4 N^+$$

$$\frac{98}{R} = Ph, Tos$$
(23)

The phosphoranes 99 undergo ring opening on imination (Scheme 9).^{157,158} However, if the rings are stable, as in the case of bis(*o*-phenylene)-chlorophosphorane 100, the displacement reaction occurs at a pentacoordinate phosphorus atom through a hexacoordinate intermediate (eqn 24).¹⁵⁹

4. IMINATION OF ORGANO-ELEMENT COMPOUNDS WITH AZIDES

Besides phosphorus other elements from Groups IV, V, and VI undergo oxidative imination with azides. However, the mechanism of such transformations in most cases was not investigated, so their attribution to the Staudinger-type process is formal.

4.1. Group IV elements. Germanium and tin

Only two-coordinate germanium and tin derivatives are iminated with azides. Germylene 101 reacts with azides giving iminogermanes (Scheme 10a) or products of RN_3 1,2-addition (Scheme 10b) and [2+3]cycloaddition (Scheme 10c) to the intermediate iminogermanes.¹⁶⁰

In contrast with the classical Staudinger mechanism, nucleophilic attack of the azide at the Ge atom has been proposed¹⁶¹ (eqn 25). However, this assumption was based exclusively on qualitative estimates of germylene reactivity.¹⁶²

$$R_{2}Ge + N_{3}R' \longrightarrow \begin{bmatrix} R_{2}Ge - N - N \equiv N \\ R_{1}Ge - N = N \end{bmatrix} \xrightarrow{-N_{2}} R_{2}Ge = NR'$$
(25)

Digermene 102 adds to phenyl azide giving a cyclic product.¹⁶³

$$\operatorname{Ar}_{2}\operatorname{Ge=GeAr}_{2} \xrightarrow{\operatorname{PhN}_{3}} \begin{bmatrix} \operatorname{Ph}_{N} & N \\ \operatorname{Ar}_{2}\operatorname{Ge-GeAr}_{2} \end{bmatrix} \xrightarrow{\operatorname{Ph}_{N}} \operatorname{Ar}_{2}\operatorname{Ge-GeAr}_{2} \qquad (26)$$

$$\operatorname{Ar} = 2,6-\operatorname{Et}_{2}\operatorname{C}_{6}\operatorname{H}_{3}$$

$$\begin{bmatrix} (Me_{3}Si)_{2}N \\ 2Ge + RN_{3} \end{bmatrix} \xrightarrow{B} \begin{bmatrix} (Me_{3}Si)_{2}N \\ R = Et_{3}Si, (t-Bu0)_{3}Si \\ B = Et_{3}Si, (t-Bu0)_{3}Si \\ R = Me_{3}Si \\ R =$$

Scheme 10.

$$[(Me_{3}Si)_{2}N]_{2}Sn = NR \rightarrow R-N Sn N-R$$

$$R = PhSO_{2}, Tos (Me_{3}Si)_{2}N N(SiMe_{3})_{2}$$

$$[(Me_{3}Si)_{2}N]_{2}Sn \xrightarrow{RN_{3}} b [(Me_{3}Si)_{2}N]_{2}Sn NR_{2} N(SiMe_{3})_{2}N N(SiMe_{3})_{2}$$

$$R = Me_{3}Si NR_{2} NR_{3} NR_{2} NR_{3} NR_{3}$$

Stannylene 103, a Group IVA analogue of germylene 101, reacts with azides similarly. Scheme 11 includes the dimerization of the intermediate stannylimines (route \mathbf{a})¹⁶⁴ or their addition to azides (routes \mathbf{b}^{164} and \mathbf{c}^{165}).

The study of stannetidine 104 imination with aryl azides (eqn 27)¹⁶⁶ has revealed that tin, like tervalent phosphorus in the Staudinger reaction, is nucleophilic.¹⁶⁷

The second order rate constants k_1 for the reaction (eqn 27) (AcNMe₂ solvent, 25°C) correlate with σ^0 values of the substituents in phenyl azides by the Hammett equation (eqn 28).¹⁶⁷

$$\log k_1 = 2.38\sigma^0 - 1.56\tag{28}$$

A phosphazide-like intermediate has been postulated in the reduction of azides to amines by a tin reagent 105.¹⁶⁸

$$\frac{\text{RN}_{3} + \frac{105}{\text{NHE}t_{3}} + \frac{1}{105} + \frac{1$$

4.2. Group V elements. Arsenic, antimony, tantalum, and vanadium

The possibility of imination of phosphorus nearest analogues from Group V, i.e. arsenic and antimony, with organic azides, was considered as early as 1919 by Staudinger and Meyer.² However, very few investigations, especially with arsenic derivatives, have been done since then.

Equation 30^{169} illustrates the rare example of a facile imination of arsenic whose reactivity is enhanced by transannular interaction in the heterocycle 106.

The end product is the imine dimer 107. Picryl azide also iminates arsenic in the heterocycles 108– 110. It was presumed that the reaction proceeds through an intermediate charge-transfer complex formed by the azide and the arsenic compound.¹⁶⁹

Triaryl-¹⁷⁰ and trialkyl-stibines¹⁷¹ are smoothly iminated with arenesulfonyl azides giving the corresponding stibinimines.

$$R_{3}Sb + ArSO_{2}N_{3} \xrightarrow{\kappa_{1}} R_{3}Sb = NSO_{2}Ar$$

$$R = Ph, Et, Pr; Ar = Ph, p-Tol, p-NO_{2}C_{6}H_{4}$$
(31)

Kinetic investigation¹⁷² has shown that in the reaction of Ph₃Sb with substituted benzenesulfonyl azides, the latter acts as an electrophile thus providing close analogy with the classical Staudinger reaction. The corresponding second order rate constants (THF, 40°C) correlate with σ^n parameters for substituents in the azides according to equation 32.

$$\log k_1 = 1.53\sigma^n - 2.79 \tag{32}$$

Some examples of azide imination are known for tantalum in its complexes ¹⁷³ and for vanadium in decamethylvanadocene 111¹⁷⁴⁻¹⁷⁶ (e.g. eqn 33).¹⁷⁵

$$Cp_{2}^{*}V + PhN_{3} \longrightarrow Cp_{2}^{*}VN_{3}Ph \longrightarrow Cp_{2}^{*}V \equiv NPh$$

$$111 \qquad Cp^{*} = \eta - C_{5}Me_{5} \qquad 112$$

$$(33)$$

In the last case, the isotopic tracer ¹⁵N is completely transferred from the labeled azide $N_2^{15}NPh$ into the imine 112.¹⁷⁶

4.3. Group VI elements

In recent years, the reactions of Group VI element derivatives with organic azides has attracted more and more attention in view of their potential synthetic utility. There were many reports on imination of sulfur in halogenothiophenes, ¹⁷⁷ sulfides, ¹⁷⁸⁻¹⁸⁰ and sulfoxides. ¹⁸¹⁻¹⁸³ The process outlined in equation 34 was proposed as a convenient method for the preparation of sulfilimines. ¹⁸⁰

$$R_{2}S + TosN_{3} \xrightarrow{\Delta, Copper catalyst} R_{2}S \longrightarrow NTos$$

$$R = Bu, PhCH_{2}, Ph$$
(34)

In most cases the reaction mechanism was presumed to involve intermediate nitrene species resulting from azide thermolysis.

The Staudinger-like reaction of diisobutyl telluride with tosyl azide was utilized for the synthesis of N-tosylimines 113 via aza-Wittig conversion of intermediate tellurilimines.¹⁸⁴

$$i-Bu_{2}Te \xrightarrow{TosN_{3}} [i-Bu_{2}Te = NTos] \xrightarrow{ArCHO} ArCH = NTos + i-Bu_{2}TeO$$
(35)
113

$$Ar = XC_6H_4(X = H, 2-MeO, 4-MeO, 4-Cl, 4-NO_2)$$

The oxidative imination of $Mo(II)^{185}$ and Mo(IV), $^{186-188}$ W(II) and W(IV)^{185} or U(III) 189,190 derivatives with organic azides is widely used to prepare imido-complexes of the metals.

5. REARRANGEMENTS OF IMINOPHOSPHORANES

The structure of iminophosphoranes is characterized by a relatively high lability that is exhibited in a variety of rearrangements discussed in this section.

5.1. Imide-amide rearrangements

5.1.1. 1,2-Migrations. These rearrangements are described by the following general equation

 $\begin{array}{c} P = N - R' \longrightarrow P - N \\ R \\ P = N - R' \longrightarrow P - N \\ P = N \\$

The 1,2-shift of an organo-element group from phosphorus to imine nitrogen results in a reduction of a phosphorus coordination. In equations 37–39 some examples of germanium,¹⁹¹ phosphorus,¹⁹² and silicon¹⁹³ 1,2-migrations are presented.

$$i-\Pr_{2} \Pr_{2} \Pr_{3} \Pr_{2} \Pr_{2} \Pr_{2} \Pr_{3} \Pr_{3} (37)$$

$$R = Me, Bu$$

(36)

$$(RO)_{2}^{P=NPh} \longrightarrow (RO)_{2}^{P-N} \xrightarrow{Ph}_{P(S)(OR)_{2}} (38)$$

$$R = Et, Pr$$

$$(\operatorname{Me}_{2}\operatorname{N})_{2}\operatorname{C=P-SiMe}_{3} \xrightarrow{\operatorname{Me}_{3}\operatorname{SiN}_{3}} \begin{bmatrix} (\operatorname{Me}_{2}\operatorname{N})_{2}\operatorname{C=P-NSiMe}_{3} \\ & & \\ &$$

There were many reports on the imination of secondary phosphines which are accompanied by a formal 1,2-hydrogen migration^{28,194-196} (e.g. eqn 40^{194}).

$$(Me_{3}Si)_{2}N-P \xrightarrow{R}_{H} \xrightarrow{Me_{3}SiN_{3}} (Me_{3}Si)_{2}N-P=NSiMe_{3} \text{ and/or } (Me_{3}Si)_{2}N-P-N \xrightarrow{R}_{H} (40)$$

$$R = t-Bu, i-Pr$$

The products 114 and 115 do not inter-convert. It was, therefore, supposed that they are formed via independent routes in the course of nitrogen elimination from a common phosphazide intermediate.

5.1.2. 1,3-*Migrations*. The title rearrangements proceed in a fashion outlined in equation 41. They were discussed in detail earlier.¹⁹⁷ In this section new data are surveyed.

The alkyl migration in the triad O–P–N, $^{21,46,198-202}$ which is typical of such rearrangements, was also observed in cyclic systems in the presence of a catalyst (Et₂O · BF₃) (eqn 42)²⁰³ and without one.³³

$$(CH_2)_n \overset{NPh}{\underset{P-NMe_2}{\longrightarrow}} \xrightarrow{\Delta, Et_2 0 \cdot BF_3} (CH_2)_n \overset{Ph}{\underset{N}{\underset{N}{\longrightarrow}}} Me_2$$
(42)

In the case presented in equation 43 the migration is complicated by the elimination of ethylene.²⁰⁴

$$(Eto)_{3}P=N-C=CHR \longrightarrow \begin{bmatrix} H_{2}C-CH_{2} \\ 0 \end{pmatrix} H COOEt \\ (Eto)_{2}P=N-C_{CHR} \end{bmatrix} \xrightarrow{O}_{CH_{2}=CH_{2}} (Eto)_{2}P-NH-C_{CHR}$$
(43)

$$R = Me, Et, Pr, Ph$$

In this type of rearrangement alkenyl, acyl, benzimidoyl, thiophosphoryl, and trimethylsilyl groups can also participate (Scheme 12).

Scheme 12.

A similar migration was also observed in a triad S-P-N.²¹⁰

$$SC(S)Ph \qquad S \qquad C(S)Ph
| (EtO)_2P=NPh \longrightarrow (EtO)_2P-N \qquad (44)$$
Ph

5.2. Imide-imide rearrangements

Some new examples of the known rearrangement¹⁹⁷ were published. Trimethylsilyl 1,5-shift from nitrogen to oxygen atom in a N-P=N-P=O system is accompanied by displacement of double bonds to give a new iminophosphorane.⁵⁵

$$(EtO)_{2}P-N(SiMe_{3})_{2} + N_{3}P(OEt)_{2} \longrightarrow \begin{bmatrix} (EtO)_{2}P \begin{pmatrix} N(SiMe_{3})_{2} \\ N-P(OEt)_{2} \end{bmatrix} \longrightarrow \\ (EtO)_{2}P \begin{pmatrix} NSiMe_{3} \\ N=P(OEt)_{2} \\ OSiMe_{3} \end{bmatrix}$$

$$(45)$$

The migrations in a N–P–N triad shown in equations 46^{55} and 47^{142} can also be attributed to the imide–imide rearrangement.

$$(Et0)_{2}P-N(SiMe_{3})_{2} \xrightarrow{PhN_{3}} \left[(Et0)_{2}P_{NPh}^{N(SiMe_{3})_{2}} \right] \xrightarrow{(Et0)_{2}P_{N-SiMe_{3}}^{NSiMe_{3}}} (46)$$

$$t_{-Bu-N=P} \xrightarrow{N(SiMe_3)_2} t_{-Bu-N=P} \xrightarrow{NSiMe_3} (47)$$

$$u_{-Bu-t} \xrightarrow{Bu-t} u_{-Bu-1} \xrightarrow{N-SiMe_3} u_{-t}$$

5.3. Imide-ylide rearrangements

These rearrangements occur in a C-P-N triad and are known in a silylotropic (eqn 48)²¹¹ or prototropic version (eqn 49).^{39,40}

$$(i-Pro)_{2P-C-H} \xrightarrow{(i-Pro)_{2P=CHCOOEt}} (48)$$

$$Ph-N \xrightarrow{SiMe_3} Ph-N-SiMe_3$$

$$\begin{array}{c} Ac-N-N \\ MeO-P \\ RN \\ RN \\ R = Ph, Tos \end{array}$$

$$\begin{array}{c} Ac-N-N \\ MeO-P \\ Me \\ RNH \\ R = Ph, Tos \end{array}$$

$$(49)$$

5.4. Imide-phosphorane rearrangement

This rearrangement accompanies the Staudinger imination with 1,1-difluoroalkyl azides. The 1,3-migration of active fluorine atoms in an iminiphosphorane leads to formation of energetically more favourable products, i.e. difluorophosphorane and nitrile.

Scheme 13 illustrates the representative reactions with phosphines,²¹² trialkyl phosphites,^{213,214} and dialkyl phosphites.²¹⁵

$$F_{3}^{CCH_{2}0} \xrightarrow{F_{3}^{CCH_{2}0}} F_{3}^{CCH_{2}0} \xrightarrow{F_{3}^{CCH_{2}0}} F_{3}^{CCH_{2}0} + F_{3}^{PF_{2}}$$

$$MeO$$

$$F_{3}^{CCHFCF_{2}N_{3}} \xrightarrow{F_{3}^{CCHFCN}} F_{3}^{CCHFCN} + (F_{3}^{CCH_{2}0})_{3}^{PF_{2}}$$

$$F_{3}^{CCHFCF_{2}N_{3}} \xrightarrow{F_{3}^{CCHFCF_{2}N=P(OEt)}} \left[F_{3}^{CCHFCF_{2}N=P(OEt)}\right] \xrightarrow{F_{3}^{CCHFC}} \left[(Eto)_{2}^{P-F_{3}}\right] + F_{3}^{CCHFCN}$$

$$F_{3}^{CCHFCF_{2}N_{3}} \xrightarrow{F_{3}^{CCHFCF_{2}N=P(OEt)}} \xrightarrow{F_{3}^{CCHFC}} \left[F_{3}^{CCHFCF_{2}N=P(OEt)}\right] \xrightarrow{F_{3}^{CCHFC}} \left[F_{3}^{CCHFCF_{2}N=P(OEt)}\right] \xrightarrow{F_{3}^{CCHFC}} \xrightarrow{F_{3}^{C$$

5.5. Prototropic rearrangements

The previously mentioned rearrangements involving imine nitrogen atom (eqn 49) are especially characteristic of iminophosphoranes derived from azidocarboxylic acids.^{202,216,217} Migration of a carboxylic proton to a P—N nitrogen atom leads to the betaine **116** (eqn 51).^{202,217} In the presence of alkoxyl groups at phosphorus, the intermediate betaines rearrange into amidophosphates (eqn 52).^{202,216,217}

$$Ph_{3}P + N_{3}CRR'COOH \longrightarrow \left[Ph_{3}P=NCRR'COOH\right] \longrightarrow Ph_{3}PNHCRR'COO^{-} (51)$$

R, R' = H, Me, Et, i-Pr 116

$$(RO)_{3}P + N_{3}CR^{1}R^{2}COOH \longrightarrow [(RO)_{3}PNHCR^{1}R^{2}COO^{-}] \longrightarrow (RO)_{2}PNHCR^{1}R^{2}COOR$$
(52)
R = Me, Et, n-Pr, i-Pr, Bu; R¹, R² = H, Me, Et, i-Pr

There were also reports on 1,3-proton shifts in iminophosphorane. Alkenyl substituents at the phosphorus²¹⁸ or the nitrogen atom²¹⁹ do not affect P=N bond.

6. REACTIONS OF IMINOPHOSPHORANES

6.1. Hydrolysis

6.1.1. Synthesis of amines. Hydrolysis of the Staudinger iminophosphorane products is a convenient method for the synthesis of amines (see reviews^{183,220}).

$$R-N_3 \xrightarrow{\gg} RN=P \leftarrow \frac{H_2 O/H^+}{2} RNH_2 + O=P \leftarrow (53)$$

Triphenylphosphine is routinely employed as the phosphorus reagent, and the resultant phosphinimine is hydrolyzed with water, sometimes with diluted acids or ammonia. This method is characterized by high chemo- and stereo-selectivity. The reduction of N_3 group in an azide does not affect other functional groups. It is widely used in the synthesis of biologically active amines, including derivatives of spermine, spermidine²²¹ and mitosene.²²² Some representative examples of amines obtained in this way are depicted in Chart 7.

Benzotriazole 117 has been proposed as a synthon for the preparation of various amines²²⁹ and their derivatives²³⁰ by a one-carbon homologation of the original hydrocarbon moiety R in the Grignard reagent RMgBr.

The reduction of azides to amines has been employed as a means for selective removal of groups protecting hydroxyl functions in complex carbohydrates and other polyhydroxylated natural products.²³¹

$$N_{3} \longrightarrow C1 + HOR \longrightarrow N_{3} \longrightarrow O-R \xrightarrow{\Delta, Pn_{3}P} H_{2}N \longrightarrow O-R \xrightarrow{N} H_{2}N \longrightarrow O-R \xrightarrow{N} H_{1} \longrightarrow HOR$$
(55)

A number of simple one-pot approaches for the synthesis of amines from primary and secondary alkyl bromides,^{232,233} tertiary alkyl chlorides,²³⁴ alcohols²³⁵⁻²³⁷ or acetates²³⁸ have been developed. These reagents, without isolation of intermediate products, are converted into azides then condensed with triethylphosphite or triphenylphosphine and, finally, hydrolyzed. Details of the method are given in Scheme 14 and in Table 5 where some examples are listed.

Scheme 14.

R	X	Method Scheme (14)	in Yield o RNH ₂ or RNH ₃ +,	f Ref. %
PhCH=CHCH2	Br	A	60	232
HC=CCH2	Br	A	80	232
s-Bu	Br	A	64.5	232
cC5H9	Br	A	79	232
EtOOC(Me)CH	Br	A	68	232
t-Bu	Cl	В	46	234
Me ₂ (PhCH ₂)C	Cl	в	36	234
(R)-Me(CH ₂) ₅ CHMe	но	C	58	235
Me ₂ (Et)C	но	D	54	236
PhCH2	HO	E	78	237
n-Bu(Et)CH	но	E	67.5	237
Me ₂ C=CHCH ₂	Ac	0 F	61	238
$Me_2^{C=CH(CH_2)}C(Me)=CHCH_2$	Ac	0 F	59	238

Table 5. One-pot synthesis of amines RNH₂ from RX

6.1.2. Synthesis of phosphorus acid amides. Aqueous hydrolysis of iminophosphoranes under mild conditions proceeds via an Arbuzov rearrangement which provides N-substituted phosphorus acid amides.^{29,54,239-241}

$$\searrow_{P=NR}^{OR} \cdot \xrightarrow{H_2O}_{-ROH} \xrightarrow{O}_{P-NHR}^{U} \cdot$$
(56)

Equations 57,²⁹ 58,⁵⁴ and 59^{240,241} illustrate this synthetic strategy.

$$Ph \qquad N=P(OR)_{3} \qquad Ph \qquad NH-P(OR)_{2}$$

$$Ph \qquad NH-P(OR)_{2} \qquad (59)$$

$$R = Me, Et, Pr, Ph$$

Phosphorus acid amides are the end products of the Staudinger reaction when it is carried out in a wet medium (eqn 60).²⁴²

$$Me_{2}C=CCH_{2}N_{3} + Ph_{2}POMe \xrightarrow{Wet ether} Me_{2}C=CCH_{2}N-PPh_{2}$$
(60)

N-Trimethylsilyliminophosphoranes 118, on hydrolysis, give amides 119 possessing unsubstituted amino groups.²⁴³

$$R_{3}P=N-P=NSiMe_{3} \xrightarrow{H_{2}O} R_{3}P=N-P-NH_{2}$$

$$CH_{2}CF_{3} \xrightarrow{OCH_{2}CF_{3}} OCH_{2}CF_{3} \xrightarrow{I19} R = Me, Me_{2}N$$

$$(61)$$

For N-alkylamidophosphates, a one-pot synthesis similar to those presented in Scheme 14 has been developed starting from tertiary alcohols²³⁶ or alkyl bromides²⁴⁴ and triethyl phosphite.

Mild hydrolysis of iminophosphoranes is also used for phosphinyl protection of amino groups.²⁴⁵

 $RCH=CCOOEt \xrightarrow{H_2O} RCH=CCOOEt \xrightarrow{CF_3COOH} RCH=CCOOEt$ (62) N=P(OEt)Ph₂ HNP(O)Ph₂ HNCOCF₃ R = Me, Et, n-Pr, i-Pr, Ph

6.1.3. Synthesis of carboxylic acid amides (acylamines). The acidolysis of iminophosphoranes is a convenient procedure providing carboxylic acid amides with protected amido groups.²⁴⁶

Later on, triphenylphosphine in Scheme 15 was substituted for triethylphosphine, as Et_3PO is more easily separated from the reaction mixture than Ph_3PO .²⁴⁷ This method was considered to be suitable for the preparation of small peptides (eqn 63),²⁴⁸ peptido-lipids (eqn 64)²⁴⁹ or acetamidosubstituted glycopeptides.²⁵⁰

$$Me \qquad 1 \cdot Ph_{3}P \qquad Me \\ N_{3}CHCOOEt \qquad 2 \cdot RCOOH = RCONHCHCOOEt \qquad (63)$$

$$RCOOH = Bec-Gly-OH, Bz-Gly-OH, Z-Gly-OH, etc.$$

1.
$$Ph_3P$$

Me(CH₂)₅CHCH₂CH=CH(CH₂)₇COOMe $\xrightarrow{2. \text{ RCOOH}}$ Me(CH₂)₅CHCH₂OH=CH(CH₂)₇COOMe (64)
N₃
R = Me, Et, Pr, Ph, PhCH₂OOCNHCH₂

When an iminophosphorane has an alkoxyl substituent at phosphorus, the quasi-phosphonium salt formed on imine nitrogen protonation eliminates an alkyl group and is converted into the corresponding amidophosphate (eqn 65).²⁵¹

$$\underbrace{(\text{Eto})_{2} \underset{\text{NPh}}{\overset{\text{Me}}{\underset{\text{NPh}}}} \underbrace{(\text{CH}_{2}\text{COOEt} & \underbrace{\text{CF}_{3}\text{COOH}}_{\text{COOEt}}}_{\text{COOEt}} \left[\underbrace{\text{Eto}_{+} & \underset{\text{P-OC=C}}{\overset{\text{Me}}{\underset{\text{HNPh}}}}_{P-OC=C} \underbrace{\text{CH}_{2}\text{COOEt}}_{\text{COOEt}} & \underbrace{\text{CF}_{3}\text{COO}}_{\text{COOEt}} \right] \rightarrow$$

$$\underbrace{\underset{\text{HNPh}}{\overset{\text{Eto}_{-} & \underset{\text{H}}{\overset{\text{H}}{\underset{\text{H}}}}}_{\text{P-OC=C}} \underbrace{\text{CH}_{2}\text{COOEt}}_{\text{COOEt}} & \underbrace{\text{CF}_{3}\text{COO}}_{\text{COOEt}} \right] \rightarrow$$

$$\underbrace{\underset{\text{H}}{\overset{\text{Eto}_{-} & \underset{\text{H}}{\overset{\text{H}}{\underset{\text{H}}}}}_{\text{P-OC=C}} \underbrace{\underset{\text{COOEt}}{\overset{\text{CH}}{\underset{\text{H}}}}_{\text{COOEt}} (65)$$

The mechanism, similar to that outlined in Scheme 15, also operates in the reaction between iminophosphoranes and phthalic anhydride.^{252,253} Such a transformation may be adopted for amino group protection, particularly in derivatives of sugars, di- or oligosaccharides.²⁵²

Acylamines may also be prepared by treating iminophosphoranes with acyl chlorides $^{253-255}$ as in the synthesis of penicillin and cephalosporin derivatives 254,255 (eqn 67²⁵⁴).

6.2. Alkylation

The alkylation of iminophosphoranes with alkyl halides is a typical reaction of such phosphorus compounds. It was comprehensively discussed in previous reviews.^{197,220}

In the case of phosphinimines, the reaction is limited to addition of an alkyl group to imine nitrogen atom, ^{65,113,230,253,256} and occasionally to other, more nucleophilic sites.²²³ Hydrolysis of the resultant phosphonium salts is used to obtain secondary amines (eqn 68).²³⁰

$$PhCH_2N=PPh_3 \xrightarrow{RI} PhCH_2NPPh_3 I^- \xrightarrow{HO^-} PhCH_2NHR$$
(68)
R = Me. Et

Imidophosphates and imidophosphonates eliminate alkyl halide after alkylation (acylation) and are transformed into the corresponding phosphorus acid amides^{197,203,233} (eqn 69²⁴¹).

Interesting intramolecular variants of alkylation by participation of a carbon atom activated by a halogeno-substituent (eqn 70)^{257,258} or an epoxy group (eqn 71)²⁵⁹ have been proposed.

$$Alko \rightarrow O-C=CHCl \land Alko \rightarrow O-C=CHCl \land P \rightarrow I \land$$

The bimolecular reaction with epoxides yields aziridines.²³⁰

$$EtN=PFh_{3} + 0 \checkmark \xrightarrow{Ph} Et-N \checkmark \xrightarrow{Ph} (72)$$

In contrast with equation 70, the cycle formed by the imine **120** on intramolecular alkylation is unstable and its cheavage results in an imide-amide rearrangement of the starting molecule.²³⁹

$$\begin{array}{c} \text{ClCH}_2\text{CH}_2\text{O} & \text{CH}_2\text{Cl} \\ \text{R} & \text{N} \\ \text{Ph} \\ 120 \end{array} \xrightarrow{\text{ClCH}_2\text{CH}_2\text{O}} & \text{ClCH}_2\text{CH}_2\text{O} & \text{Ph} \\ \text{Ph} & \text{Cl}^{-1} \end{array} \xrightarrow{\text{ClCH}_2\text{CH}_2\text{Ch}_2\text{Cl}} \begin{array}{c} \text{ClCH}_2\text{CH}_2\text{O} & \text{Ph} \\ \text{Ph} & \text{Cl}^{-1} \end{array} \xrightarrow{\text{ClCH}_2\text{CH}_2\text{Ch}_2\text{Cl}} \begin{array}{c} \text{ClCH}_2\text{CH}_2\text{O} & \text{Ph} \\ \text{Ph} & \text{Ph} \end{array} \xrightarrow{\text{Cl}^{-1}} & \text{Ph} \end{array} \xrightarrow{\text{ClCH}_2\text{CH}_2\text{Cl}} \begin{array}{c} \text{ClCH}_2\text{CH}_2\text{O} & \text{Ph} \\ \text{Ph} & \text{Ph} \end{array} \xrightarrow{\text{Cl}^{-1}} & \text{Ph} \end{array} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \begin{array}{c} \text{ClCH}_2\text{CH}_2\text{Ch}_2\text{Cl} & (73) \\ \text{Ph} & \text{Ph} \end{array} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \end{array} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \begin{array}{c} \text{ClCH}_2\text{CH}_2\text{Ch}_2\text{Ch}_2\text{Cl} & (73) \\ \text{Ph} & \text{Ph} \end{array} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \end{array} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \begin{array}{c} \text{ClCH}_2\text{CH}_2\text{Ch}_2\text{Ch}_2\text{Cl} & (73) \\ \text{Ph} & \text{Ph} \end{array} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \end{array} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Ph}} \xrightarrow{\text{Cl}^{-1}} \xrightarrow{\text{Ph}} \xrightarrow$$

6.3. Cyclization reactions

6.3.1. Cyclodimerization. Cyclodimerization is one of the most typical features of iminophosphoranes.³

$$2 \gg_{P=N-} \longrightarrow \stackrel{P-N-}{\underset{-N-P}{\overset{i}{\leftarrow}}}$$
(74)

There are numerous reports on dimerization of $cyclic^{12,14,31-36,39,40,43,57,200-202,217,260,261}$ and acyclic^{11,12,262} phosphorus imino derivatives. In the first case, the most pronounced driving force of the reaction is a decrease in a ring strain resulted by a spirophosphorane formation (eqn 75).^{31,32}

The cyclodimerization is controlled by a delicate balance of electronic (electrophilicity of phosphorus and nucleophilicity of nitrogen atom in P=N bond) and steric factors.^{31,32}

For *P*-halogenated iminophosphoranes, the unusual acyclic dimerization has been reported 10,263 (eqn 76^{10}).

$$2 \xrightarrow{Ph}_{R_2N'I} \xrightarrow{Ph}_{R_2N'I} \xrightarrow{Ph}_{R_2N'I} \xrightarrow{Ph}_{R_2N'I} \xrightarrow{Ph}_{N-P=NPh} I^-$$
(76)
R = Et, Pr

6.3.2. Cycloaddition to alkynes and alkenes. This reaction is possible in the case of iminophosphoranes having an unsaturated C=C bond. N-Vinyliminophosphoranes 121 can participate in Diels-Alder [2+4]cycloaddition with dimethyl acetylene-carboxylate as the diene (Scheme 16a) or in [2+2]cyclization as the ene component (Scheme 16b).²⁶⁴ For additional examples see Section 6.4.

Equation 77 illustrates the intramolecular version of the cycloaddition reaction.²⁶⁵

$$(Me_{3}Si)_{2}N \xrightarrow{P} \underbrace{SiMe_{3}}_{SiMe_{3}} \underbrace{Me_{3}SiN_{3}}_{Me_{3}Si} \underbrace{(Me_{3}Si)_{2}N-P}_{Me_{3}Si} \underbrace{SiMe_{3}}_{Me_{3}Si} \xrightarrow{(Me_{3}Si)_{2}N-P}_{Me_{3}Si} \xrightarrow{SiMe_{3}}_{Me_{3}Si}$$

$$(Me_{3}Si)_{2}N-P \xrightarrow{H}_{SiMe_{3}}^{SiMe_{3}} \xrightarrow{(Me_{3}Si)_{2}N-P}_{Me_{3}Si} \xrightarrow{(Me_{3}Si)_{2}N-P}_{Me_{3}Si} \xrightarrow{(Me_{3}Si)_{2}N-P}_{Me_{3}Si}$$

$$(77)$$

6.3.3. Spirocyclization. Spirocyclization has attracted much attention since the first publications by Cadogan.^{266,267} The process includes the intramolecular 1,2-addition of an iminophosphorane reactive side group, H-X (X = O, COO, N), across the P=N bond resulting in a ring closure. Such reactions are the most characteristic of cyclic imines which thereby convert to less strained spirophosphoranes. Some examples classified according to the type of a H-X group are discussed below.

6.3.3.1. Hydroxyl group participation. The reaction of diazaphospholes **122** with ortho-azidophenol proceeds in a stereoselective manner and leads to spiroadducts **123** (eqn 78).²⁶⁸ The intermediate iminophosphorane undergoes very rapid cyclization, so all attempts to detect it in the reaction mixture were unsuccessful.

In a similar way, the spirophosphoranes 124²⁶⁹ and 125²⁷⁰ were prepared.

Equation 79²⁷¹ exemplifies the participation of alcoholic hydroxyl in this reaction. The analogous cyclization was also observed on interaction between acyclic phosphites and 2-azidoalcohols.²⁷²

An interesting case of enolic hydroxyl participation in the spirocyclization has been reported.²⁶⁰

The reaction involving diol addition across the P—N bond and subsequent displacement of the amino group by the second hydroxyl was proposed as a simple one-pot approach to the synthesis of spirophosphoranes.²⁷³

$$\begin{bmatrix} 0 \\ 0 \\ PhN_3 \\ 0 \\ Phn \\ Fh \\ X = (CH_2)_n, n = 2-5 \end{bmatrix} \begin{bmatrix} PhNH \\ 0 \\ 0 \\ Phn \\ Phn \\ NH_2 \\ 0 \\ Phn \\ NH_2 \\ (81)$$

Equation 82²⁷⁴ gives an example of a trimethylsilyloxy group participation in a spirocyclization which leads to phosphorus-containing crown ethers.

6.3.3.2. Carboxyl group participation. A rare example of carboxyl participation in the spirocyclization is presented in eqn 83.^{202,217}

In the absence of cyclic substituents at phosphorus, the conversion of the intermediate imine stops at the stage of imine nitrogen protonation resulting in betaine formation (eqns 51 and 52).

6.3.3.3. Amino group participation. The spirocyclization of this type has been observed in the reactions depicted in Scheme 17.^{201,202} Amino groups ($\mathbf{R} = \mathrm{Et}_2 \mathbf{N}$, i- $\mathbf{Pr}_2 \mathbf{N}$) attached to phosphorus in spirophosphorane **126** are eliminated on heating. Acyclic iminophosphoranes do not undergo such a cyclization.^{200,201} It should be noted that the proton transfer to imine nitrogen preceding the spirocyclization occurs only from an amino group as shown in Scheme 17. An amidic proton does not migrate to the P=N bond so that the Staudinger reaction with azides N₃CH₂CH₂NHCOR is not accompanied by spirocyclization.²⁰⁰

The intermolecular spirocyclization of an iminophosphorane with diamines has been reported (eqn 84).²⁷⁵ The reaction proceeds via successive eliminations of exocyclic amino groups at phosphorus to give triazaphosphole **127** having a two-coordinate P atom.

6.3.4. *Reductive cyclization*. Such a cyclization, characteristic of the Staudinger products derived from 2-azidoalcohols, gives aziridines. As an example, the reaction of 10-azido-9,10-dihydrophenanthren-9-ol with trialkyl phosphites^{276,277} is shown in Scheme 18. This reaction has been employed in the synthesis of the arene imine **128**,²⁷⁸ epimino ionone **129**,²⁷⁹ the LTA₄ aza-analog **130**,²⁸⁰ and the optically active aziridinecarboxylic acids **131**.²⁸¹

Scheme 17.

The mechanism of the reductive cyclization presumably includes the following competitive processes: the HO group intramolecular addition across P=N leading to oxazaphospholidines (Scheme 19a) and the nucleophilic attack of imine nitrogen at the carbon atom bound to hydroxy group resulting in aziridine cycle closure (Scheme 19b).²⁸²

It is possible that the azetidine in eqn 85 is also formed by a similar mechanism.²⁸³

$$R_{3}P + N_{3}(CH_{2})_{3}OH \longrightarrow R_{3}P = N(CH_{2})_{3}OH \xrightarrow{\Delta} H - N$$

$$R = Bu, Ph$$
(85)

6.3.5. Other cyclization reactions. In this section some additional transformations, which do not fit into categories described so far, are discussed. They include the intra- and inter-molecular cyclizations of iminophosphoranes with or without P=N bond participation. Among them, the condensation reactions involving alkoxycarbonyl and amino functions form a special group.²⁸⁴⁻²⁸⁷ The amino group can pre-exist in a starting imine molecule (eqn 86)²⁸⁴ or be generated by hydrolysis of P=N function before cyclization to lactams^{286,287} (eqn 87)²⁸⁷ or other products.²⁸⁸

Scheme 19.

Y. G. GOLOLOBOV and L. F. KASUKHIN

$$R_{3}(CH_{2})_{n}^{R}CHCOOAlk \xrightarrow{Ph_{3}P} H_{2}N(CH_{2})_{n}^{R}CHCOOAlk \xrightarrow{R} (87)$$

$$R = H, Me, H_{2}C=CHCH_{2}; n = 2, 3$$

The nucleophilic substitution in a methoxycarbonyl group can also result in cyclization.²⁸⁹

Recently, an interesting cyclization was observed^{290,291} in the reaction of triamidoiminophosphate **132** with phosphorus or silicon dihalo-derivatives that involves two nitrogen atoms of the triad N-P-N in the starting imide (eqn 89^{290}).

$$(PhNH)_{2}P_{N-H}^{NPh} + Cl_{2}X \xrightarrow{Et_{3}N} (PhNH)_{2}P_{N}^{+N}X Cl^{-} \xrightarrow{-HCl} PhNH_{PhN}^{+N}X (89)$$

$$\underbrace{132}_{X = P-NMe_{2}, SiMe_{2}}$$

6.4. Insertion reactions

Insertion into the P==N bond of iminophosphoranes takes place upon their interaction with alkynes. It includes a [2+2]cycloaddition step and provides phosphorus ylides after redistribution of bonds in the four-membered intermediate cycle.^{37,292}

A similar insertion occurs as an initial step in the one-pot synthesis of 2-vinyl-1-azadienes 133 and divinylketones 134 as in Scheme 20^{293} as well as azaphosphinines 135 (eqn 91)²⁹⁴ or phospholes 136 (eqn 92).²⁹⁵ In the last two cases the intermediate phosphorus ylides undergo intramolecular condensation.

Scheme 20.

6.5. Oxidation and reduction

The oxidation of iminophosphoranes with ozone produces nitro compounds, presumably through an intermediate cycloadduct.²⁹⁶

$$R = Ph(Et)CH, n = C_8H_{17}, C_6H_{13}CHAE$$

$$(93)$$

$$R = Ph(Et)CH, n = C_8H_{17}, C_6H_{13}CHAE$$

By reduction of phosphine imines with lithium aluminium hydride, it is possible to obtain starting phosphines, that is, an imino group can be used to protect a P^{III} center^{284,285} (eqn 94).²⁸⁴

6.6. Substitution reactions

6.6.1. Substitution of a trimethylsilyl group at imine nitrogen. A trimethylsilyl group at imine nitrogen usually exhibits a high mobility and is easily substituted. This feature is widely used for chemical modification of iminophosphoranes without affecting their P=N bonds.¹

Among novel examples of such transformations, the methods for introduction of phosphorus groups to imine nitrogen should be mentioned (eqns 95^{297} and 96^{19}).

$$R_{3}P=NSiMe_{3} + F_{3}CCH_{2}O-PFh_{2} \longrightarrow R_{3}P=N-PFh_{2}$$

$$R = Me, Ph, Me_{2}N$$

$$2 PhPF_{4} + 2 (Me_{2}N)_{3}P=NSiMe_{3} \longrightarrow F_{Ph} + N=P(NMe_{2})_{3} PhPF_{5}$$

$$(96)$$

Equation 97 demonstrates the NCO group insertion into Si–N bond of iminophosphorane upon reaction with isocyanate.²⁹⁸

$$F_{3}C \xrightarrow{N=C=0}_{Ph} + Me_{3}Si-N=PPh_{3} \longrightarrow \begin{bmatrix} Me_{3}Si & 0 \\ F_{3}C & N-C-N=PPh_{3} \\ Ph & N=C=0 \end{bmatrix} \xrightarrow{-Me_{3}SiNCO}$$

$$\xrightarrow{F_{3}C}_{Ph}C=N-C-N=PPh_{3}$$
(97)

In recent years, the synthesis of metallocycles on the bases of N-trimethylsilyliminophosphoranes has been actively developed. In eqn 98 and Chart 9 some metallocycles prepared by this method, containing osmium,²⁹⁹ tungsten,³⁰⁰ vanadium,^{301,302} niobium,³⁰³ titanium,³⁰² and tellurium³⁰⁴ are exemplified.

Rhenium substitutes Me₃Si group without cyclization (eqn 99).³⁰⁵ A similar acyclic mode of substitution is also known for titanium.³⁰⁶

$$(CH_2)_{n \text{PPh}_2=NSIMe_3}^{\text{PPh}_2=NSIMe_3} \xrightarrow{\text{Re}_2^07} (CH_2)_{n \text{PPh}_2=N-\text{Re}_3}^{\text{PPh}_2=N-\text{Re}_3}$$
(99)
n = 1, 2

N-Trimethylsilyliminophosphoranes are also utilized as ligands in molybdenum, tungsten, rhodium, and iridium coordination compounds^{18,307} (eqn 100^{307}).

$$Ph_{2}As \xrightarrow{PPh_{2}}_{NSIMe_{3}} + (Cod)M \xrightarrow{C1}_{C1}M(Cod) \longrightarrow \xrightarrow{Ph_{2}}_{P=N}M(Cod)$$
(100)
M = Rh, Ir; Cod = cycloocta-1,5-diene

6.6.2. Functionalization of metallated phosphine imines. The metallation of alkyldiphenylphosphine imines with lithium diisopropyl amide followed by condensation of an intermediate carbanion with electrophiles is a convenient method for iminophosphorane functionalization at a side chain without affecting the P=N bond. Alkyl halides³⁰⁸ Schiff bases,²⁸⁵ aldehydes³⁰⁹ (Scheme 21) as well as dimethylformamide,³⁰⁹ dimethyl disulfide,³⁰⁹ and aryl cyanides^{308,310} were used as electrophiles. The reaction with Schiff bases or aldehydes proceeds in a stereoselective manner.

The reaction with any nitriles is also stereoselective and is accompanied by a rearrangement resulting in insertion of the nitrile group into the P–C bond (Scheme 22).³¹⁰

Vinyldiphenylphosphine imines can also be alkylated via metallation step.²⁵⁶ A similar approach was utilized for intramolecular cyclization of phosphine imines^{289,295} (eqns 88 and 92).

7. AZA-WITTIG REACTION

The aza-Wittig reaction is one of the most wide-spread methods for conversion of P=N to C=N bond by treating iminophosphoranes with carbonyl or thiocarbonyl compounds.¹⁸³ The

Scheme 21.

reaction was first described by H. Staudinger;^{2,311} however, it is traditionally regarded as an analogue of the well-known Wittig reaction, though the latter, as mentioned by G. Wittig himself, is, indeed, a 'variation on the Staudinger theme'.

In this section, recent examples of acyclic and nitrogen-containing heterocyclic systems prepared by the aza-Wittig reaction are discussed.

7.1. Intermolecular aza-Wittig reaction

Scheme 23 presents the types of carbonyl and thiocarbonyl reagents generally employed and the corresponding products formed in the intermolecular version of the aza-Wittig reaction. They include aldehydes^{230,238,253,254,312-315} and ketones³¹⁶⁻³¹⁹ as precursors to Schiff bases; isocyanates^{230,253,312,314,320-323} and isothiocyanates^{65,312,322} providing carbodiimides; carbon dioxide and carbon disulfide for preparation of isocyanates,³²² isothiocyanates,^{230,322,324} phosphine oxides^{285,308} or phosphine sulfides;^{41,308} and, finally, ketenes³¹² converting to ketenimines.

In Chart 10 some representative compounds obtained by this method are shown.

Scheme 23.

The interesting approach to fluorinated aminoacids via aza-Wittig condensation of phosphine imines and methyl trifluoropyruvate has recently been proposed³¹⁶⁻³¹⁸ (eqn 101³¹⁸).

Participation of ester or amide carbonyl groups in the aza-Wittig reaction is not typical. Nevertheless, some examples of its occurrence are known. Using mixed acetic formic anhydride in aza-Wittig condensation it is possible to replace an iminophosphoranyl group with a formamido group.³²⁵

Amide carbonyl participation in the aza-Wittig reaction is illustrated by eqn 102.²⁰⁸

$$(Eto)_{3}P=NPh + Ph-C-N-P(OEt)_{2} - (Eto)_{3}PO Ph-C-N-P(OEt)_{2}$$
(102)
Me

It is likely that a similar intermolecular mechanism is also operative in the rearrangement shown in eqn 103.²⁰⁸

$$(Eto)_{2}^{P-N-C} \xrightarrow{P_{h}}_{Me} (Eto)_{2}^{P-N-C} \xrightarrow{NPh}_{Me} (103)$$

7.2. Intramolecular aza-Wittig reaction

7.2.1. One-step version. The intramolecular aza-Wittig reaction takes place on interaction of carbonyl containing azides with phosphorus(III) reagents. It occurs, for example, in ω -azidoketone-triphenylphosphine systems to yield cyclic imines.³²⁶

$$\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \stackrel{P = P n_{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} - N_{3} \end{array} \right] \stackrel{P = P n_{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} - N = P P n_{3} \end{array} \right] \stackrel{P = P n_{3} P 0}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{2}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2})_{n} N \end{array} \right] \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2}) \stackrel{R^{3}}{\longrightarrow} R^{1} \\ (CH_{2}) \\ (CH_{2}) \stackrel{R^{3}}{\longrightarrow} \left[\begin{array}{c} R^{3} \stackrel{R$$

In the case of ω -azido- β -dicarbonyl compounds, the cyclization is followed by hydrogen 1,3-migration to the imine nitrogen^{286,327} (eqn 105³²⁷).

The combination of the Staudinger and aza-Wittig reactions was utilized in the synthesis of 4-azahomoadamantanes.^{328,329}

With appropriate choice of starting azides, this method provides isoquinolines (eqn 107),^{330,331} oxazoles (eqn 108),³³² benzoxazines (eqn 109),^{333,334} and many other nitrogen-containing hetero-cycles.

Cyclic structures prepared by this method (Chart 11) illustrate wide synthetic possibilities.

It should be mentioned that a carbonyl function in esters 202,330-335,340 or amides 200,202,336-338,342,343 is more easily subjected to the intramolecular rather than intermolecular aza-Wittig reaction.

7.2.2. Version with preceding carbonylation of iminophosphoranes. In this section the heterocycle syntheses are considered starting from N-vinyliminophosphoranes, to which a carbonyl function required for intramolecular aza-Wittig condensation was preliminarly introduced. The carbonylation is performed with α -bromoketones in the presence of triethylamine (eqn 110)^{345,346} or with α , β -unsaturated ketones via Michael addition (eqn 111).³⁴⁶⁻³⁴⁸ The final aza-Wittig condensation provides substituted pyrroles or pyridines, respectively.

$$\stackrel{Ph}{\underset{N \in PPh_{3}}{\longrightarrow}} + \stackrel{Br}{\underset{O}{\longrightarrow}} \stackrel{R^{2}}{\underset{R^{1}}{\longrightarrow}} = \stackrel{Et_{3}N}{\underset{Ph}{\longrightarrow}} \left[\underset{Ph}{\underset{N \cap R^{2}}{\longrightarrow}} \stackrel{R^{2}}{\underset{Ph}{\longrightarrow}} \right] \longrightarrow \stackrel{R^{2}}{\underset{Ph}{\longrightarrow}} \stackrel{R^{2}}{\underset{R^{1}}{\longrightarrow}} \stackrel{R^{2}}{\underset{R^{1}}{\longrightarrow}} \stackrel{R^{2}}{\underset{R^{1}}{\longrightarrow}} \stackrel{R^{2}}{\underset{R^{1}}{\longrightarrow}} (110)$$

$$\begin{array}{c} R^{1} \\ R^{1} \\ R^{2} \\ R^{2}$$

The same approach was also used in synthesis of azaazulenes 137, $^{349-351}$ cyclohepta[b]pyridines 138, 352 and pyridinophanes 139. 353

7.3. Cyclization of aza-Wittig products

7.3.1. *Electrocyclic ring closure*. This method involves the introduction of a conjugated heterocumulene moiety into iminophosphorane by the aza-Wittig reaction, followed by electrocyclic ring closure (eqns 112–114). In eqns 112 and 113, 1,3-proton shift stabilizes the end cyclic product.

In syntheses by eqns 112 and 113, isocyanates,³⁵⁴⁻³⁵⁸ isothiocyanates,³⁵⁹ carbon dioxide³⁵⁷ or sulfur dioxide³⁵⁹ are usually employed in an aza-Wittig condensation step. The typical examples are shown in Scheme 25.³⁵⁹ Other heterocyclic structures, i.e. **140–143**, designed by this method are depicted in Chart 13.

The syntheses according to eqn 114 are exemplified by the following transformations (Scheme 26)^{360,361} and by structures 144 and 145 in Chart 13.

The electrocyclic ring closure in a system pictured below

is followed by Dimroth rearrangement,^{359,360} as in eqn 115,³⁶⁰ or includes a preliminary rearrangement of the cumulene moiety (eqn 116).³⁶²

The method considered here was applied to prepare mesoionic structures, e.g. 146 and 147 in Chart 13, by Scheme 27. 363,364

The electrocyclization of aza-Wittig products containing no heterocumulene systems can also take place^{253,365} (eqn 117²⁵³).

Scheme 27.

The interesting cyclization of an aza-Wittig imine with participation of a nitrene site has recently been reported.³⁶⁶

7.3.2. *Diels-Alder cyclization*. Aza-Wittig condensation products can be used as components of the Diels-Alder cyclization which is, in fact, a variant of the electrocyclic reactions discussed in the preceding section.

Aza-Wittig products can act as dienophiles (eqn 119)³⁶⁷ or diene components (eqn 120)³⁵⁴ of intermolecular [4+2]cycloadditions.

The competitive [4+2]cycloaddition of the carbodiimide **149** to the identical molecule or to the carbonyl component **148** of the preceding aza-Wittig condensation step, results in formation of two heterocyclic products in the reaction outlined by Scheme 28.³⁶⁸ Their relative yields depend on molar ratio of the reagents in the aza-Wittig step.

Scheme 28.

In equation 121 the rare example of an intramolecular hetero Diels-Alder cycloaddition is presented. Here, the carbodiimide moiety functions as a part of a 2-azadiene, whereas the C=C double bond of the *ortho*-butadienyl substituent takes a role of a dienophile.³²⁰

7.3.3. Cyclization following intramolecular nucleophilic attack. In this final section some specific examples of heterocycle synthesis based on iminophosphoranes will be considered. It includes a condensation step of the aza-Wittig type and subsequent cyclization involving nucleophilic attack at the imine carbon atom (Scheme 29). The intramolecular nucleophile can be the nitrogen atom of a hydrazono³⁶⁹⁻³⁷² (eqn 122),³⁶⁹ amino (Scheme 30),³⁷³ enamino^{101,102,372,374} or amido group (Scheme 31³⁷⁵).

Scheme 29.

Scheme 30.

Scheme 31.

In addition, there are some examples of the intramolecular nucleophilic attack at imine carbon involving either carbonyl oxygen (eqn 123),³⁷⁶ thione sulfur (eqn 124),³⁶⁴ or a carbon atom (eqn 125).³⁷⁷

8. CONCLUSION

We can state with satisfaction that the Staudinger reaction now enters its eighth decade with still unspent potential. It continues to intrigue researchers and stimulates new enterprises in organo-element chemistry.

Two main streams can be distinguished in current publications. The first represents investigations on the Staudinger reaction its mechanism and reagent structure-reactivity relations. For the last decade, a new wave has arisen and strengthened in this stream. This development involves phosphorus in states other than $\lambda^3 \sigma^3$ as well as the imination of other hetero-elements with azides. This expansion of the traditional frames of the classical Staudinger reaction has already resulted in the synthesis of numerous new compounds with nitrogen-element bonds.

The second, more abundant stream comprises the utilization of the Staudinger products for preparation of various organic structures containing no phosphorus, including nitrogen heterocycles, cumulenes, amines, amides, and imines. Here, the ideas of the two outstanding scientists, H. Staudinger and G. Wittig, come into contact and give impressive practical results.

Up to now, more than 800 publications on the Staudinger reaction have already appeared in the literature. It is high time to generalize all the information and analyse it in a form which is more comprehensive than is possible in sporadic reviews.

REFERENCES

- 1. Gololobov, Yu. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437.
- 2. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
- 3. Münstedt, R.; Wannagat, U. Monatsh. Chem. 1985, 116, 7.
- 4. Yurchenko, A. G.; Fedorenko, T. V.; Titova, M. I.; Yurchenko, R. I.; Voitsekhovskaya, O. M. Zh. Obshch. Khim. 1989, 59, 2212.
- 5. Wolfsberger, W. Chem-Ztg. 1989, 113, 156.
- 6. Wolfsberger, W. Ibid. 1989, 113, 349.
- 7. Wolfsberger, W. Ibid. 1989, 113, 351.
- 8. Gorbatenko, Zh. K.; Mitel'man, I. E. Zh. Obshch. Khim. 1981, 51, 717.
- 9. Kovaleva, T. V.; Mel'nichuk, E. A.; Feshchenko, N. G. Ibid. 1984, 54, 223.
- 10. Kovaleva, T. V.; Feshchenko, N. G. Ibid. 1986, 56, 1777.
- 11. Riesel, L.; Strum, D.; Beuster, A.; Taudien, S.; Thomas, B. Z. Chem. 1984, 24, 138.
- 12. Riesel, L., Strum, D., Nagel, A.; Taudien, S.; Beuster, A.; Karwatzki, A. Z. anorg. allg. Chem. 1986, 542, 157.
- 13. Danchenko, M. N.; Gololobov, Yu. G. Zh. Obshch. Khim. 1982, 52, 2205.
- 14. Kolodka, T. V.; Gololobov, Yu. G. Ibid. 1983, 53, 1013.
- Kasukhin, L. F.; Ponomarchuk, M. P.; Kolodka, T. V.; Malenko, D. M.; Kim, T. V.; Repina, L. A.; Kiseleva, E. I.; Gololobov, Yu. G. *Ibid.* 1983, 53, 1022.
- 16. Gubnitskaya, E. S.; Parkhomenko, V. S.; Semashko, Z. T.; Samaray, L. I. Phosphorus and Sulfur 1983, 15, 257.
- 17. Gubnitskaya, E. S.; Peresypkina, L. P.; Parkhomenko, V. S. Zh. Obshch. Khim. 1986, 56, 2017.
- 18. Cavell, R. G.; Katti, K. V. Phosphorus, Sulfur Silicon Relat. Elem. 1989, 41, 43.
- Bartsch, R.; Harris, R. K.; Norval, E. M.; Stadelmann, W.; Stelzer, O.; Schmutzler, R. Phosphorus and Sulfur 1988, 40, 135.
- 20. Diemert, K.; Kuchen, W.; Kutter, J. Ibid. 1983, 15, 155.
- 21. Suvalova, E. A.; Kasukhin, L. F.; Ponomarchuk, M. P.; Chudakova, T. I.; Klepa, T. I.; Tupchienko, S. K.; Dudchenko, T. N.; Gololobov, Yu. G. Ukr. Khim. Zhurn. 1982, 48, 386.
- 22. Tupchienko, S. K.; Dudchenko, T. N.; Gololobov, Yu. G. Zh. Obshch. Khim. 1983, 53, 656.

- 23. Takcishi, M.; Tadano, M.; Hayama, S. Macromol. Chem., Rapid Commun. 1983, 871.
- 24. Osman, F. H.; Abdel-Gawad, M. M.; Abbasi, M. M. J. Chem. Soc., Perkin Trans. I. 1984, 1189.
- 25. Schmidt, H.; Lensink, C.; Xi, S. K.; Verkade, J. G. Z. anorg. allg. Chem. 1989, 578, 75.
- 26. Benhammou, M.; Kraemer, R.; Germa, H.; Majoral, J.-P.; Navech, J. Phosphorus and Sulfur 1982, 14, 105.
- 27. Navech, J.; Kraemer, R.; Majoral, J.-P. Tetrahedron Lett. 1980, 21, 1449.
- 28. Arbuzov, B. A.; Erastov, O. A.; Ignat'eva, S. N.; Romanova, I. P.; Ovodova, O. V.; Arshinova, R. P. Izv. Akad. Nauk SSSR, Ser. Khim, 1983, 2550.
- 29. Arbuzov, B. A.; Dianova, E. N. Ibid. 1983, 418.
- 30. Quin, L. D.; Keglevich, G.; Castar, K. C. Phosphorus and Sulfur 1987, 31, 133.
- 31. Kukhar', V. P.; Grishkun, E. V.; Rudavskii, V. P.; Gilyarov, V. A. Zh. Obshch. Khim. 1980, 50, 1477.
- 32. Kukhar', V. P.; Grishkun, E. V.; Kalibabchuk, N. N. Ibid. 1982, 52, 2227.
- 33. Marre, M. R.; Sanchez, M.; Brazier, J. F.; Wolf, R. Can. J. Chem. 1982, 60, 456.
- 34. Osman, F. H.; El-Hamouly, W. S.; Abdel-Gawad, M. M.; Abbasi, M. M. Phosphorus and Sulfur 1982, 14, 1.
- 35. Osman, F. H.; Kamel, M. M.; El-Kateb, A. A.; Shabana, R. Chem. Ind. (London) 1984, 302.
- 36. Kukhar', V. P.; Kasheva, T. N.; Kasukhin, L. F.; Ponomarchuk, M. P. Zh. Obshch. Khim. 1984, 54, 1527.
- 37. Bellan, J.; Marre, M. R.; Sanchez, M.; Wolf, R. Phosphorus and Sulfur 1981, 12, 11.
- 38. Beker, W.; Jones, P. G.; Schomburg, D.; Schmutzler, R. Chem. Ber. 1990, 123, 1759.
- 39. Arbuzov, B. A.; Dianova, E. N. Dokl. Akad. Nauk SSSR 1980, 225, 1117.
- 40. Arbuzov, B. A.; Dianova, E. N.; Zabotina, E. Ya. Izv. Akad. Nauk SSSR, Ser. Khim. 1981, 2635.
- 41. Razhabov, A.; Yusupov, M. M. Zh. Obshch. Khim. 1985, 55, 748.
- 42. Kumaravel, S. S.; Krishnamurthy, S. S.; Cameron, T. S.; Linden, A. J. Chem. Soc., Dalton Trans. 1990, 1119.
- 43. Breker, J.; Jones, P. G.; Schmutzler, R. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 53, 193.
- 44. Gruber, M.; Schmutzler, R. Chem. Ber. 1990, 123, 289.
- 45. Dimukhametov, M. N.; Buina, N. A.; Nuretdinov, I. A. Zh. Obshch. Khim. 1982, 52, 2797.
- 46. Köhler, H.; Glanz, D. Z. anorg. allg. Chem. 1987, 554, 123.
- 47. Radchenko, O. A.; Il'chenko, A. Ya; Yagupol'skii, L. M. Zh. Org. Khim. 1981, 17, 500.
- 48. Obafemi, C. A. Synth. Reactiv. Inorg. Metal.-Org. Chem. 1982, 12, 41.
- 49. Obafemi, C. A. Phosphorus and Sulfur 1982, 13, 119.
- 50. Cremlyn, R.; Swinbourne, F.; Plant, S.; Saunders, D.; Sinderson, C. Ibid. 1981, 10, 323.
- 51. El-Kateb, A. A.; Soliman, F. M. Egypt. J. Chem. 1981, 24, 465.
- 52. Khodak, A. A.; Gilyarov, V. A.; Kabachnik, M. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1981, 1137.
- 53. Cremlyn, R.; Akhtar, N. Phosphorus and Sulfur 1979, 7, 247.
- 54. Gilyarov, V. A.; Matrosov, E. I., Bel'skii, F. I.; Kabachnik, M. I. Zh. Obshch. Khim. 1980, 50, 44.
- 55. Tikhonina, N. A.; Gilyarov, V. A.; Kabachnik, M. I. Ibid. 1982, 52, 760.
- 56. Tikhonina, N. A.; Khodak, A. A.; Gilyarov, V. A. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 465.
- 57. Budilova, I. Yu.; Gusar' N. I.; Gololobov, Yu. G. Zh. Obshch. Khim. 1983, 53, 285.
- 58. Chernega, A. N.; Antipin, M. Yu.; Struchkov, Yu. T.; Gusar', N. I.; Budilova, I. Yu.; Gololobov, Yu. G. Ibid. 1987, 57, 1967.
- 59. Marchenko, A. P.; Shaposhnikov, S. I.; Koidan, G. N.; Kharchenko, A. V.; Pinchuk, A. M. Ibid. 1988, 58, 2230.
- 60. Schomburg, D.; Wermuth, U.; Schmutzler, R. Phosphorus and Sulfur 1986, 26, 193.
- 61. Schomburg, D.; Wermuth, U.; Schmutzler, R. Chem. Ber. 1987, 120, 1713.
- 62. Jones, P. G.; Meyer, A.; Schmutzler, R. Z. Naturforsch. 1990, 45B, 175.
- 63. Bezler, H.; Strähle, J. Ibid. 1983, 38B, 317.
- 64. Li, B.-L.; Mukherjee, P.; Neilson, R. H. Inorg. Chem. 1989, 28, 605.
- 65. Hankovszky, H. O.; Hideg, K.; Lex, L. Synthesis 1981, 147.
- 66. Lowe-Ma, C. K.; Nissan, R. A.; Wilson, W. S. J. Org. Chem. 1990, 55, 3755.
- 67. Kappe, Th.; Pfaffenschlager, A.; Stadlbauer, W. Synthesis 1989, 666.
- 68. Laszlo, P.; Polla, E. Tetrahedron Lett. 1984, 25, 4651.
- 69. Cornelis, A.; Laszlo, P. Svnthesis 1985, 909.
- 70. Riesel, L.; Steinbach, J.; Herrmann, E. Z. anorg. allg. Chem. 1983, 502, 21.
- 71. Saalfrank, R. W.; Ackermann, E.; Fischer, M.; Weiss, B.; Carriè, R.; Danion, D.; Peters, K.; von Schnering, H. G. Bull. Soc. Chim. Belg. 1985, 94, 475.
- 72. Gertsyuk, M. N.; Samarai, L. I. Zh. Org. Khim. 1985, 21, 1576.
- 73. Willson, M.; Sanchez, M.; Labarre, J.-F. Inorg. Chim. Acta 1987, 136, 53.
- 74. Böhm, E.; Dehnicke, K.; Beck, J.; Hiller, W.; Strähle, J.; Maurer, A.; Fenske, D. Z. Naturforsch. 1988, 43B, 138.
- 75. Müller, U.; Schmock, F. Z. anorg. allg. Chem. 1980, 468, 165.
- 76. Cohen, H. L. J. Polym. Sci., Polym. Chem. Ed. 1985, 23, 1671.
- 77. Gilyarov, V. A. Usp. Khimii 1982, 51, 1579.
- 78. Wagner, O.; Ehle, M.; Regitz, M. Angew. Chem. Int. Ed. Engl. 1989, 28, 225.
- 79. Gusar', N. I.; Budilova, I. Yu.; Gololobov, Yu. G. Zh. Obshch. Khim. 1981, 51, 1477.
- 80. Budilova, I. Yu.; Gusar', N. I.; Gololobov, Yu. G. Ibid. 1984, 54, 1985.
- 81. Neilson, R. H. Inorg. Chem. 1981, 20, 1679.
- Böske, J.; Niecke, E.; Ocando-Mavarez, E.; Majoral, J.-P.; Bertrand, G. Ibid. 1986, 25, 2695.
 Budilova, I. Yu.; Gusar', N. I.; Gololobov, Yu. G. Zh. Obshch. Khim. 1980, 50, 1201.
- 84. Baceiredo, A.; Bertrand, G.; Majoral, J.-P.; El Anba, F.; Manuel, G. J. Amer. Chem. Soc. 1985, 107, 3945.
- 85. Majoral, J.-P.; Bertrand, G.; Baceiredo, A.; Ocando Mavarez, E. Phosphorus and Sulfur 1986, 27, 75.

- Kasukhin, L. F.; Ponomarchuk, M. P.; Sologub, L. S.; Kisilenko, A. A.; Kukhar', V. P. Zh. Obshch. Khim. 1983, 53, 568.
- Chernega, A. N.; Antipin, M. Yu.; Struchkov, Yu. T.; Boldeskul, I. E.; Ponomarchuk, M. P.; Kasukhin, L. F.; Kukhar', V. P. *Ibid.* 1984, 54, 1979.
- 88. Ponomarchuk, M. P.; Kasukhin, L. F.; Shevchenko, M. V.; Sologub, L. S.; Kukhar', V. P. Ibid. 1984, 54, 2468.
- Chernega, A. N.; Antipin, M. Yu.; Struchkov, Yu. T.; Ponomarchuk, M. P.; Kasukhin, L. F.; Kukhar', V. P. Ibid. 1989, 59, 1256.
- 90. Saalfrank, R. W.; Ackermann, E.; Fischer, M.; Wirth, U.; Zimmermann, H. Chem. Ber. 1990, 123, 115.
- 91. Shevchenko, I. V.; Furmanova, M. V.; Kukhar', V. P.; Kolodyazhnyi, O. I. Zh. Obshch. Khim. 1989, 59, 2206.
- 92. Martin, G. J.; Sanchez, M.; Marre, M.-R. Tetrahedron Lett. 1983, 24, 4989.
- 93. Tolmachev, A. A.; Kostyuk, A. N.; Kozlov, E. S.; Chernega, A. N. Zh. Obshch. Khim. in press.
- 94. Chidester, C. G.; Szmuszkovicz, J.; Duchamp, D. J.; Laurian, L. G.; Freeman, J. P. Acta Cryst. 1988, C44, 1080.
- 95. Hillhouse, G. L.; Goeden, G. V.; Haymore, B. L. Inorg. Chem. 1982, 21, 2064.
- 96. Kukhar, V. P.; Kasukhin, L. F.; Ponomarchuk, M. P.; Chernega, A. N.; Antipin, M. Yu.; Struchkov, Yu. T. Phosphorus, Sulfur Silicon Relat. Elem. 1989, 44, 149.
- 97. Prokopenko, V. P.; Proklina, N. V.; Onys'ko, P. P. Zh. Obshch. Khim. 1984, 54, 812.
- 98. Leffler, J. E.; Temple, R. D. J. Amer. Chem. Soc. 1967, 89, 5235.
- 99. Onys'ko, P. P.; Proklina, N. V.; Prokopenko, V. P.; Gololobov, Yu. G. Zh. Obshch. Khim. 1984, 54, 325.
- Chernega, A. N.; Antipin, M. Yu.; Struchkov, Yu. T.; Boldeskul, I. E.; Ponomarchuk, M. P.; Kasukhin, L. F.; Kukhar', V. P. Ibid. 1988, 58, 284.
- 101. Molina, P.; Arques, A.; Vinader, M. V. Tetrahedron Lett. 1989, 30, 6237.
- 102. Molina, P.; Arques, A.; Vinader, M. V. J. Org. Chem. 1990, 55, 4724.
- 103. Horner, L.; Jordan, M. Phosphorus and Sulfur 1979, 6, 491.
- 104. Horner, L.; Jordan, M. Ibid. 1980, 8, 225.
- 105. Heesing, A.; Steinkamp, H. Tetrahedron Lett. 1981, 22, 3827.
- 106. Heesing, A.; Steinkamp, H. Chem. Ber. 1982, 115, 2854.
- 107. Dimukhametov, M. N.; Nuretdinov, I. A. Izv. Akad. Nauk SSSR, Ser. Khim. 1983, 1214.
- 108. Dimukhametov, M. N.; Nuretdinov, I. A. Dokl. Akad. Nauk SSSR 1984, 278, 625.
- 109. Baccolini, G.; Todesco, P. E.; Bartoli, G. Phosphorus and Sulfur 1981, 10, 387.
- 110. Gololobov, Yu., Kasukhin, L.; Ponomarchuk, M.; Klepa, T.; Yurchenko, R. Ibid. 1981, 10, 339.
- 111. Kasukhin, L. F.; Ponomarchuk, M. P.; Yurchenko, R. I.; Klepa, T. I.; Yurchenko, A. G.; Gololobov, Yu. G. Zh. Obshch. Khim. 1982, 52, 797.
- 112. Ponomarchuk, M. P.; Kasukhin, L. F.; Budilova, I. Yu.; Gololobov, Yu. G. Ibid. 1980, 50, 1937.
- 113. Ponomarchuk, M. P.; Sologub, L. S.; Kasukhin, L. F.; Kukhar', V. P. Ibid. 1985, 55, 1725.
- 114. Kasukhin, L. F.; Ponomarchuk, M. P.; Gololobov, Yu. G. Dokl. Akad. Nauk SSSR 1981, 257, 119.
- 115. Gololobov, Yu. G.; Kasukhin, L. F.; Petrenko, V. S. Phosphorus and Sulfur 1987, 30, 393.
- 116. Gusar', N. I.; Randina, L. V.; Ponomarchuk, M. P.; Gololobov, Yu. G. Ukr. Khim. Zhurn. 1982, 48, 196.
- 117. Regitz, M.; Binger, P. Angew. Chem. 1988, 100, 1541.
- 118. Hermesdorf, M.; Birkel, M.; Heydt, H.; Regitz, M.; Binger, P. Phosphorus, Sulfur Silicon Relat. Elem. 1989, 46, 31.
- 119. Rösch, W.; Vogelbacher, U.; Allspach, T.; Regitz, M.; J. Organomet. Chem. 1986, 306, 39.
- 120. Ko, Y. Y. C. Y. L., Carrié, R.; Muench, A.; Becker, G. J. Chem. Soc., Chem. Commun. 1984, 1634.
- 121. Rösch, W.; Regitz, M. Angew. Chem. 1984, 96, 898.
- 122. Rösch, W.; Facklam, T.; Regitz, M. Tetrahedron 1987, 43, 3247.
- 123. Allspach, T.; Regitz, M.; Becker, G.; Becker, W. Synthesis 1986, 31.
- 124. Cooper, T. A.; Kroto, H. W.; Nixon, J. F.; Ohashi, O. J. Chem. Soc., Chem. Commun. 1980, 333.
- 125. Appel, R.; Knoll, F.; Ruppert, I. Angew. Chem. 1981, 93, 771.
- 126. Markovskii, L. N.; Romanenko, V. D. Zh. Obshch. Khim. 1987, 57, 3.
- 127. Arbuzov, B. A.; Dianova, E. N.; Sharipova, S. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1981, 1600.
- 128. Arbuzov, B. A.; Dianova, E. N.; Zabotina, E. Ya.; Akhmetkhanova, I. Z. Zh. Obshch. Khim. 1990, 60, 35.
- 129. Neilson, R. H. Phosphorus and Sulfur 1983, 18, 43.
- 130. Xie, Z.-M., Wisian-Neilson, P.; Neilson, R. H. Organometallics 1985, 4, 339.
- 131. van der Knaap, T. A.; Bickelhaupt, F. Chem. Ber. 1984, 117, 915.
- 132. van der Knaap, T. A.; Klebach, T. C.; Visser, F.; Lourens, R.; Bickelhaupt, F. Tetrahedron 1984, 40, 991.
- 133. Zurmühlen, F.; Rösch, W.; Regitz, M. Z. Naturforsch. 1985, 40B, 1077.
- 134. Rahmoune, M.; Ko, Y. Y. C. Y. L.; Carrié, R.; Tonnard, F. New J. Chem. 1989, 13, 891.
- 135. Arbuzov, B. A.; Ionkin, A. S.; Ignat'eva, S. N.; Efremov, Yu. Ya.; Nekhoroshkov, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1989, 2381.
- 136. Ko, Y. Y. C. Y. L.; Carrié, R. J. Chem. Soc., Chem. Commun. 1984, 1640.
- 137. Märkl, G., Troetsch-Schaller, I.; Hölzl, W. Tetrahedron Lett. 1988, 29, 785.
- 138. Appel, R.; Casser, C. Chem. Ber. 1985, 118, 3419.
- 139. Markovskii, L. N.; Romanenko, V. D.; Ruban, A. V. Zh. Obshch. Khim. 1987, 57, 1433.
- 140. Germa, H.; Navech, J. Phosphorus and Sulfur 1986, 26, 327.
- 141. Pohl, S.; Niecke, E.; Schäfer, H.-G. Angew. Chem. 1978, 90, 135.
- 142. Niecke, E.; Schäfer, H.-G. Chem. Ber. 1982, 115, 185.
- 143. Romanenko, V. D.; Ruban, A. V.; Iksanova, S. V.; Markovskii, L. N. Zh. Obshch. Khim. 1984, 54, 313.
- 144. Marre, M. R.; Boisdon, M. T.; Sanchez, M. Tetrahedron Lett. 1982, 23, 853.

- 145. Niecke, E.; Rüger, R.; Lysek, M.; Schoeller, W. W. Phosphorus and Sulfur 1983, 18, 35.
- 146. Cowley, A. H.; Kemp, R. A. Chem. Rev. 1985, 85, 367.
- 147. Niecke, E.; Kröher, R. Angew. Chem. 1976, 88, 758.
- 148. Niecke, E.; Kröher, R. Z. Naturforsch. 1979, 34B, 837.
- 149. Sanchez, M.; Marre, M. R.; Brazier, J. F.; Bellan, J.; Wolf, R. Phosphorus and Sulfur 1983, 14, 331.
- 150. Marre, M. R.; Sanchez, M.; Wolf, R. Ibid. 1982, 13, 327.
- 151. Marre, M.-R.; Sanchez, M.; Wolf, R. J. Chem. Soc., Chem. Commun. 1984, 566.
- 152. Mazieres, M. R.; Sanchez, M.; Bellan, J.; Wolf, R. Phosphorus and Sulfur 1986, 26, 97.
- 153. Kasukhin, L. F.; Ponomarchuk, M. P.; Kim, T. V.; Kukhar', V. P. Dokl. Akad. Nauk SSSR 1986, 290, 1375.
- 154. Burford, N.; Spence, R. v. H.; Richardson, J. F. J. Chem. Soc., Dalton Trans., 1991, 1615.
- 155. Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G. J. Amer. Chem. Soc. 1988, 110, 6463.
- 156. Baceiredo, A.; Bertrand, G.; Majoral, J.-P.; Dillon, K. B. J. Chem. Soc., Chem. Commun. 1985, 562.
- 157. Sanchez, M.; Brazier, J.-F.; Houalla, D.; Munoz, A.; Wolf, R. Ibid. 1976, 730.
- 158. Klaebe, A.; Sanchez, M.; Caruana, G.; Wolf, R. J. Chem. Soc., Perkin Tran. II. 1980, 976.
- 159. Skowronska, A.; Pakulski, M.; Michalski, J. J. Amer. Chem. Soc. 1979, 101, 7412.
- 160. Pfeiffer, J.; Maringgele, W.; Noltemeyer, M.; Meller, A. Chem. Ber. 1989, 122, 245.
- 161. Satgé, J. Pure and Appl. Chem. 1984, 56, 137.
- 162. Riviere, P.; Cazes, A.; Castel, A.; Riviere-Baudet, M.; Satgé, J. J. Organomet. Chem. 1978, 155, C58.
- 163. Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1990, 9, 2061.
- 164. Khmaruk, A. M.; Pinchuk, A. M. Zh. Org. Khim. 1983, 19, 883.
- 165. Khmaruk, A. M.; Pinchuk, A. M. Ibid. 1984, 20, 1805.
- 166. Khmaruk, A. M.; Oleinik, V. A.; Pinchuk, A. M. Zh. Obshch. Khim. 1986, 56, 2167.
- 167. Khmaruk, A. M.; Oleinik, V. A.; Kasukhin, L. F.; Ponomarchuk, M. P.; Pinchuk, A. M. Ibid. 1987, 57, 1097.
- 168. Bartra, M.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett. 1987, 28, 5941.
- 169. Maroni, P.; Madaule, Y.; Seminario, T.; Wolf, J.-G. Can. J. Chem. 1985, 63, 636.
- 170. Pinchuk, A. M.; Kuplennik, Z. I.; Belaya, Zh. N. Zh. Obshch. Khim. 1976, 46, 2242.
- 171. Kuplennik, Z. I.; Belaya, Zh. N.; Pinchuk, A. M. Ibid. 1981, 51, 2711.
- 172. Kasukhin, L. F.; Ponomarchuk, M. P.; Kuplennik, Z. I.; Pinchuik, A. M. Ibid. 1980, 50, 1032.
- 173. Rocklage, S. M.; Schrock, R. R. J. Amer. Chem. Soc. 1980, 102, 7808.
- 174. Wiberg, N.; Häring, H.-W.; Schubert, U. Z. Naturforsch. 1980, 35B, 599.
- 175. Gambarotta, S.; Chiesi-Villa, A.; Guastini, C. J. Organomet. Chem. 1984, 270, C49
- 176. Osborne, J. H.; Rheingold, A. L.; Trogler, W. C. J. Amer. Chem. Soc. 1985, 107, 7945.
- 177. Meth-Cohn, O.; van Vuuren, G. J. Chem. Soc., Chem. Commun. 1984, 190.
- 178. Benati, L.; Grossi, M.; Montevecchi, P. C.; Spagnolo, P. Ibid. 1982, 763.
- 179. Benati, L., Montevecchi, P. C., Spagnolo, P. J. Chem. Soc., Perkin Trans. I. 1984, 625.
- 180. Svoronos, P.; Horak, V. Synthesis 1979, 596.
- 181. Kondratenko, N. V.; Radchenko, O. A.; Yagupol'skii, L. M. Zh. Org. Khim. 1984, 20, 2250.
- 182. Kirby, G. W.; McGuigan, H.; MacKinnon, J. W. M.; McLean, D.; Sharma, R. P. J. Chem. Soc., Perkin Trans. I 1985, 1437.
- 183. Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
- 184. Suzuki, H.; Takeda, S.; Hanazaki, Y. Chem. Lett. 1985, 679.
- 185. Lichtenhan, J. D.; Critchlow, S. C.; Doherty, N. M. Inorg. Chem. 1990, 29, 439.
- 186. Haymore, B. L.; Maatta, E. A.; Wentworth, R. A. D. J. Amer. Chem. Soc. 1979, 101, 2063.
- 187. Chou, C. Y.; Maatta, E. A. Inorg. Chem. 1984, 23, 2912.
- 188. Chou, C. Y.; Huffman, J. C.; Maatta, E. A. J. Chem. Soc., Chem. Commun. 1984, 1184.
- 189. Brennan, J. G.; Andersen, R. A. J. Amer. Chem. Soc. 1985, 107, 514.
- 190. Rosen, R. K.; Andersen, R. A.; Edelstein, N. M. Ibid. 1990, 112, 4588.
- 191. Foss, V. L.; Veits, Yu. A.; Chernykh, T. E.; Lutsenko, I. F. Dokl. Akad. Nauk SSSR 1979, 249, 882.
- 192. Gololobov, Yu. G.; Suvalova, E. A.; Chudakova, T. I. Zh. Obshch Khim. 1981, 51, 1433.
- 193. Markovskii, L. N.; Romanenko, V. D.; Pidvarko, T. I. Ibid. 1982, 52, 1925.
- 194. O'Neal, H. R.; Neilson, R. H. Inorg. Chem. 1984, 23, 1372.
- 195. Wolfsberger, W. Chem.-Ztg. 1986, 110, 450.
- 196. Wolfsberger, W. Ibid. 1988, 112, 379.
- 197. Gilyarov, V. A. Usp. Khimii 1978, 47, 1628.
- 198. Gilyarov, V. A.; Kvasov, B. A.; Shcherbina, T. M.; Kabachnik, M. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 151.
- 199. Tupchienko, S. K.; Dudchenko, T. N.; Gololobov, Yu. G. Zh. Obshch. Khim. 1981, 51, 1015.
- 200. Gusar', N. I.; Chaus, M. P.; Gololobov, Yu. G. Ibid. 1983, 53, 2481.
- 201. Gusar', N. I.; Chaus, M. P.; Chernega, A. N.; Antipin, M. Yu.; Boldeskul, I. E.; Struchkov, Yu. T.; Gololobov, Yu. G. *Ibid.* 1984, 54, 1271.
- 202. Gololobov, Yu. G.; Gusar', N. I.; Chaus, M. P. Tetrahedron 1985, 41, 793.
- 203. Gilyarov, V. A.; Tikhonina, N. A.; Shcherbina, T. M.; Kabachnik, M. I. Zh. Obshch. Khim. 1980, 50, 1438.
- 204. Yonezawa, Y.; Shin, C.; Kiyohara, M.; Yoshimura, J. Tetrahedron Lett. 1979, 3851.
- 205. Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. Zh. Obshch. Khim. 1984, 54, 228.
- 206. Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. Ibid. 1987, 57, 807.
- 207. Mironov, V. F.; Ofitserov, E. N.; Konovalova, I. V.; Pudovik, A. N. Ibid. 1983, 53, 1427.
- 208. Sinitsa, A. D.; Malenko, D. M.; Repina, L. A.; Loktionova, R. A.; Shurubura, A. K. Ibid. 1986, 56, 1262.

- 209. Well, M.; Schmutzler, R. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 54, 151.
- 210. Danchenko, M. N.; Sinitsa, A. D. Zh. Obshch. Khim. 1986, 56, 1773.
- 211. Kolodyazhnyi, O. I.; Yakovlev, V. N.; Kukhar', V. P. Ibid. 1979, 49, 2458.
- 212. Krespan, C. G. J. Org. Chem. 1986, 51, 332.
- 213. Lermontov, S. A.; Popov, A. V.; Sukhozhenko, I. I.; Martynov, I. V. Izv. Akad. Nauk SSSR, Ser. Khim. 1989, 215.
- 214. Lermontov, S. A.; Popov, A. V.; Sukhozhenko, I. I.; Zavel'skii, V. O.; Martynov, I. V. Ibid. 1990, 682.
- 215. Lermontov, S. A.; Popov, A. V.; Sukhozhenko, I. I.; Pushin, A. N.; Martynov, I. V. Ibid. 1990, 933.
- 216. Gusar', N. I.; Chaus, M. P.; Gololobov, Yu. G. Zh. Obshch. Khim. 1979, 49, 21.
- 217. Chaus, M. P.; Gusar', N. I.; Gololobov, Yu. G. Ibid. 1982, 52, 24.
- 218. Baechler, R. D.; Blohm, M.; Rocco, K. Tetrahedron Lett. 1988, 29, 5353.
- Abramovitch, R. A.; Konieczny, M.; Pennington, W.; Kanamathareddy, S.; Vedachalam, M. J. Chem. Soc., Chem. Commun. 1990, 269.
- 220. Abel, E. W.; Mucklejohn, S. A. Phosphorus and Sulfur 1981, 9, 235.
- 221. Nagarajan, S.; Ganem, B. J. Org. Chem. 1987, 52, 5044.
- 222. Rebek, J.; Shaber, S. H.; Shue, Y.-K.; Gehret, J.-C.; Zimmerman, S. Ibid. 1984, 49, 5164.
- 223. Wamhoff, H.; Haffmanns, G.; Schmidt, H. Chem. Ber. 1983, 116, 1691.
- 224. Imazawa, M.; Eckstein, F. J. Org. Chem. 1979, 44, 2039.
- 225. Baum, K.; Berkowitz, P. T.; Grakauskas, V.; Archibald, T. G. Ibid. 1983, 48, 2953.
- 226. Pilard, S.; Vaultier, M. Tetrahedron Lett. 1984, 25, 1555.
- 227. Vaultier, M.; Knouzi, N.; Carrie, R. Ibid. 1983, 24, 763.
- 228. Knouzi, N.; Vaultier, M.; Carrié, R. Bull. Soc. Chim. Fr. 1985, 815.
- 229. Katritzky, A. R.; Jiang, J.; Urogdi, L. Tetrahedron Lett. 1989, 30, 3303.
- 230. Katritzky, A. R.; Jiang, J.; Urogdi, L. Synthesis 1990, 565.
- 231. Kusumoto, S.; Sakai, K.; Shiba, T. Bull. Chem. Soc. Jpn. 1986, 59, 1296.
- 232. Koziara, A.; Osowska-Pacewicka, K.; Zawadzki, S.; Zwierzak, A. Synthesis 1985, 202.
- 233. Zwierzak, A.; Koziara, A. Phosphorus and Sulfur 1987, 30, 331.
- 234. Koziara, A.; Osowska-Pacewicka, K.; Zawadzki, S.; Zwierzak, A. Synthesis 1987, 487.
- 235. Fabiano, E.; Golding, B. T.; Sadeghi, M. M. Ibid. 1987, 190.
- 236. Koziara, A.; Zwierzak, A. Tetrahedron Lett. 1987, 28, 6513.
- 237. Koziara, A. J. Chem. Res. Synop. 1989, 9, 296.
- 238. Murahashi, S.-I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. J. Org. Chem. 1989, 54, 3292.
- 239. Mastryukova, T. A.; Mashchenko, N. V.; Odinets, I. L.; Petrovskii, P. V.; Kabachnik, M. I. Zh. Obshch. Khim. 1988, 58, 1967.
- 240. Dimukhametov, M. N.; Nuretdinov, I. A. Ibid. 1983, 53, 2648.
- 241. Dimukhametov, M. N.; Nuretdinov, I. A. Ibid. 1985, 55, 2483.
- 242. Hassner, A.; Keogh, J. J. Org. Chem. 1986, 51, 2767.
- 243. Flindt, E.-P. Z. anorg. allg. Chem. 1980, 461, 193.
- 244. Koziara, A. J. prakt. Chem. 1988, 330, 473.
- 245. Shin, C.; Yonezawa, Y.; Watanabe, K.; Yoshimura, J. Bull. Chem. Soc. Jpn. 1981, 54, 3811.
- 246. Garcia, J.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett. 1984, 25, 4841.
- 247. Urpi, F.; Vilarrasa, J. Ibid. 1986, 27, 4623.
- 248. Zaloom, J.; Calandra, M.; Roberts, D. C. J. Org. Chem. 1985, 50, 2601.
- 249. Lie Ken Jie, M. S. F.; Lam, W. L. K.; Lao, H. B. J. Chem. Soc., Perkin Trans. I 1989, 1.
- 250. Friedrich-Bochnitschek, S.; Waldmann, H.; Kunz, H. J. Org. Chem. 1989, 54, 751.
- 251. Lysenko, V. P.; Gololobov, Yu. G.; Boldeskul, I. E.; Rozhkova, Z. Z. Ukr. Khim. Zhurn. 1982, 48, 1063.
- 252. Garcia, J.; Vilarrasa, J.; Bordas, X.; Banaszek, A. Tetrahedron Lett. 1986, 27, 639.
- 253. Barluenga, J.; Ferrero, M.; Palacios, F. J. Chem. Soc., Perkin Trans. I 1990, 2193.
- 254. Bachi, M. D.; Vaya, J. J. Org. Chem. 1979, 44, 4393.
- 255. Bachi, M. D.; Klein, J. J. Chem. Soc., Perkin Trans. I 1983, 1925.
- 256. Barluenga, J.; López, F.; Palacios, F. Ibid. 1988, 2329.
- 257. Gololobov, Yu. G.; Kim, T. V.; Ivanova, Zh. M. Zh. Obshch. Khim. 1979, 49, 2383.
- 258. Kim, T. V.; Kiseleva, E. I.; Struchkov, Yu. T.; Antipin, M. Yu.; Chernega, A. N.; Gololobov, Yu. G. 1984, 54, 2486.
- 259. Mulzer, J.; Becker, R.; Brunner, E. J. Amer. Chem. Soc. 1989, 111, 7500.
- 260. Gololobov, Yu. G.; Nesterova, L. I.; Kukhar', V. P.; Luk'yanchuk, V. I. Zh. Obshch. Khim. 1981, 51, 477.
- 261. Tupchienko, S. K.; Dudchenko, T. N.; Sinitsa, A. D. Ibid. 1986, 56, 2519.
- 262. Bellan, J.; Brazier, J.-F.; Zenati, N.; Sanchez, M. C. R. Acad. Sci. Paris, Ser. C. 1979, 289, 449.
- 263. Marchenko, A. P.; Miroshnichenko, V. V.; Pinchuk, A. M. Zh. Obshch. Khim. 1984, 54, 1213.
- 264. Kobayashi, T.; Nitta, M. Chem. Lett. 1985, 1459.
- 265. Boyd, B. A.; Thoma, R. J.; Neilson, R. H. Tetrahedron Lett. 1987, 28, 6121.
- 266. Cadogan, J. I. G.; Stewart, N. J.; Tweddle, N. J. J. Chem. Soc., Chem. Commun. 1978, 182.
- 267. Cadogan, J. I. G.; Gosney, I.; Henry, E.; Naisby, Th.; Nay, B.; Stewart, N. J.; Tweddle, N. J. Ibid. 1979, 189.
- 268. Baccolini, G.; Spagnolo, P.; Todesco, P. E. Phosphorus and Sulfur 1980, 8, 127.
- 269. Kukhar', V. P.; Grishkun, E. V.; Rudavskii, V. P. Zh. Obshch. Khim. 1980, 50, 1017.
- 270. Razhabov, A.; Yusupov, M. M. Ibid. 1982, 52, 2209.
- 271. Pöchlauer, P.; Petter, W.; Peringer, P.; Müller, E. P. J. Chem. Soc., Chem. Commun. 1985, 1764.
- 272. Willeit, A.; Müller, E. P.; Peringer, P. Helv. Chim. Acta 1983, 66, 2467.

- 273. Cadogan, J. I. G.; Stewart, N. J.; Tweddle, N. J. J. Chem. Soc., Chem. Commun. 1979, 191.
- 274. Kal'chenko, V. I.; Atamas', L. I.; Serguchev, Yu. A.; Markovskii, L. N. Zh. Obshch. Khim. 1984, 54, 1754.
- 275. Majoral, J.-P.; Kraemer, R.; N'Gando M'Pondo, T.; Navech, J. Tetrahedron Lett. 1980, 21, 1307.
- 276. Weitzberg, M.; Aizenshtat, Z.; Jerushalmy, P.; Blum, J. J. Org. Chem. 1980, 45, 4252.
- 277. Weitzberg, M.; Avnir, D.; Aizenshtat, Z.; Blum, J. J. Heterocycl. Chem. 1983, 20, 1019.
- 278. Blum, J.; Ben-Shoshan, S. Ibid. 1983, 20, 1461.
- 279. Müller, E. P. Helv. Chim. Acta 1982, 65, 1617.
- 280. Zamboni, R.; Rokach, J. Tetrahedron Lett. 1983, 24, 331.
- 281. Legters, J.; Thijs, L.; Zwanenburg, B. Ibid. 1989, 30, 4881.
- 282. Pöchlauer, P.; Müller, E. P. Helv. Chim. Acta 1984, 67, 1238.
- 283. Szmuszkovicz, J.; Kane, M. P.; Laurian, L. G.; Chidester, C. G.; Scahill, T. A. J. Org. Chem. 1981, 46, 3562.
- 284. Barluenga, J.; López, F.; Palacios, F. Tetrahedron Lett. 1987, 28, 2875.
- 285. Barluenga, J.; López, F.; Palacios, F. Synthesis 1989, 298.
- 286. Khoukhi, M.; Vaultier, M.; Carrié, R. Tetrahedron Lett. 1986, 27, 1031.
- 287. Khoukhi, M.; Vaultier, M.; Carrié, R. Tetrahedron 1987, 43, 1811.
- 288. Sha, C.-K.; Tsou, C.-P. J. Chem. Soc., Chem. Commun. 1986, 310.
- 289. Barluenga, J.; López, F.; Palacios, F. Tetrahedron Lett. 1987, 28, 4327.
- 290. Rutkovskii, E. K.; Zal'tsman, I. S.; Feshchenko, N. G.; Pinchuk, A. M. Zh. Obshch. Khim. 1990, 60, 1670.
- 291. Zal'tsman, I. S.; Bespal'ko, G. K.; Marchenko, A. P.; Pinchuk, A. M.; Sinitsa, A. D.; Tupchienko, S. K. Ibid. 1990, 60, 2175.
- 292. Bellan, J.; Sanchez, M.; Marre-Mazières, M.-R.; Murillo, A. Beltran, Bull. Soc. Chim. Fr. 1985, 491.
- 293. Barluenga, J.; Merino, I.; Palacios, F. Tetrahedron Lett. 1989, 30, 5493.
- 294. Barluenga, J.; Lopez, F.; Palacios, F. J. Chem. Soc., Chem. Commun. 1985, 1681.
- 295. Barluenga, J.; López, F.; Palacios, F. Ibid. 1986, 1574.
- 296. Corey, E. J.; Samuelsson, B.; Luzzio, F. A. J. Amer. Chem. Soc. 1984, 106, 3682.
- 297. Flindt, E.-P. Z. anorg. allg. Chem. 1982, 487, 119.
- 298. Gorbatenko, V. I.; Mel'nichenko, N. V.; Samarai, L. I. Zh. Org. Khim. 1982, 18, 2289.
- 299. Katti, K. V.; Roesky, H. W.; Rietzel, M. Z. anorg. allg. Chem. 1987, 553, 123.
- 300. Roesky, H. W.; Zimmer, M.; Noltemeyer, M. Chem. Ber. 1989, 122, 63.
- 301. Witt, M.; Roesky, H. W.; Noltemeyer, M.; Sheldrick, G. M. Angew Chem. 1988, 100, 852.
- 302. Plenio, H.; Witt, M.; Edelmann, F. T.; Henkel, T.; Noltemeyer, M.; Pauer, F.; Stalke, D.; Sheldrick, G. M.; Roesky, H. W. Phosphorus, Sulfur Silicon Relat. Elem. 1989, 41, 335.
- 303. Roesky, H. W.; Liebermann, J.; Noltemeyer, M.; Schmidt, H.-G. Chem. Ber. 1989, 122, 1641.
- 304. Münzenberg, J.; Noltemeyer, M.; Roesky, H. W. Ibid. 1989, 122, 1915.
- 305. Roesky, H. W.; Hesse, D.; Rietzel, M.; Noltemeyer, M. Z. Naturforsch. 1990, 45B, 72.
- 306. Katti, K. V.; Cavell, R. G. Inorg. Chem. 1989, 28, 413.
- 307. Katti, K. V.; Cavell, R. G. Organometallics 1989, 8, 2147.
- 308. Barluenga, J.; López, F.; Palacios, F. J. Chem. Res. Synop. 1985, 211.
- 309. Barluenga, J.; López, F.; Palacios, F. Synthesis 1988, 562.
- 310. Barluenga, J.; Ferrero, M.; López, F.; Palacios, F. J. Chem. Soc., Perkin Trans. I 1989, 615.
- 311. Staudinger, H.; Hauser, E. Helv. Chim. Acta 1921, 4, 861.
- 312. Tsuge, O.; Kanemasa, S.; Matsuda, K. J. Org. Chem. 1984, 49, 2688.
- 313. Yagodinets, P. I.; Chernyuk, I. N.; Volynskaya, E. M.; Shevchuk, M. I.; Kushnir, V. N. Zh. Obshch. Khim. 1984, 54, 772.
- 314. Barluenga, J.; Ferrero, M.; Palacios, Tetrahedron Lett. 1988, 29, 4863.
- 315. Golding, B. T.; O'Sullivan, M. C.; Smith, L. L. Ibid. 1988, 29, 6651.
- 316. Kukhar', V. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 2290.
- 317. Soloshonok, V. A.; Gerus, I. I.; Yagupol'skii, Yu. L. Zh. Org. Khim. 1986, 22, 1335.
- 318. Soloshonok, V. A.; Gerus, I. I.; Yagupol'skii, Yu. L.; Kukhar', V. P. Ibid. 1987, 23, 2308.
- 319. Soloshonok, V. A.; Gerus, I. I.; Yagupol'skii, Yu. L.; Kukhar', V. P. Ibid. 1988, 24, 993.
- 320. Molina, P.; Alajarin, M.; Vidal, A. J. Chem. Soc., Chem. Commun. 1990, 1277.
- 321. Gorbatenko, V. I.; Matveev, Yu. I.; Gertsyuk, M. N.; Samarai, L. I. Zh. Org. Khim. 1984, 20, 2543.
- 322. Eguchi, S.; Takeuchi, H.; Watanabe, N. Nippon Kagaku Kaishi 1987, 1280; Chem. Inform, 1988, N4, 150.
- 323. Matveev, Yu. I.; Gorbatenko, V. I. Zh. Org. Khim. 1989, 25, 1572.
- 324. Padwa, A.; Gasdaska, J. R.; Haffmanns, G.; Rebello, H. J. Org. Chem. 1987, 52, 1027.
- 325. Hiebl, J.; Zbiral, E. Liebigs Ann. Chem. 1988, 765.
- 326. Lambert, P. H.; Vaultier, M.; Carrié, R. J. Chem. Soc., Chem. Commun. 1982, 1224.
- 327. Lambert, P. H.; Vaultier, M.; Carrié, R. J. Org. Chem. 1985, 50, 5352.
- 328. Sasaki, T.; Eguchi, S.; Okano, T. J. Amer. Chem. Soc. 1983, 105, 5912.
- 329. Eguchi, S.; Okano, T.; Takeuchi, H. Heterocycles 1987, 26, 3265.
- 330. Hickey, D. M. B.; MacKenzie, A. R.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Chem. Commun. 1984, 776.
- 331. Hickey, D. M. B.; MacKenzie, A. R.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. I 1987, 921.
- 332. Takeuchi, H.; Yanagida, S.; Ozaki, T.; Hagiwara, S.; Eguchi, S. J. Org. Chem. 1989, 54, 431.
- 333. Stegmann, H. B.; Stöcker, F.; Wax, G. Synthesis 1981, 816.
- 334. Stegmann, H. B.; Klotz, D.; Weiss, J. E. Chem. Ber. 1985, 118, 4632.
- 335. Brossmer, R.; Mack, H. Tetrahedron Lett. 1981, 22, 933.

- 336. Chaus, M. P.; Gusar', N. I.; Gololobov, Yu. G. Zh. Obshch. Khim. 1983, 53, 244.
- 337. Eguchi, S.; Takeuchi, H.; J. Chem. Soc., Chem. Commun. 1989, 602.
- 338. Molina, P.; Alajarin, M.; López-Leonardo, C.; Madrid, I. Tetrahedron 1989, 45, 1823.
- Molina, P.; Alajarin, M.; Ferao, A. Synthesis 1986, 843.
 Aubert, T.; Tabyaoui, B.; Farnier, M.; Guilard, R. J. Chem. Soc., Perkin Trans. I 1989, 1369.
- 341. Pfaendler, H. R.; Strasser, R. Liebigs Ann. Chem. 1987, 911.
- 342. Takeuchi, H.; Eguchi, S. Tetrahedron Lett. 1989, 30, 3313.
- 343. Molina, P.; Alajarin, M.; Vidal. A.; Elguero, J.; Claramunt, R. M. Tetrahedron 1988, 44, 2249.
- 344. Lee, K.-J.; Choi, D. O.; Kim, S.; Jeong, J. U.; Park, H. Synthesis 1990, 455.
- 345. Iino, Y.; Kobayashi, T.; Nitta, M. Heterocycles 1986, 24, 2437.
- 346. Kobayashi, T.; Iino, Y.; Nitta, M. J. Chem. Soc. Jpn. Chem. and Ind. Chem. 1987, 1237.
- 347. Kobayashi, T.; Nitta, M. Chem. Lett. 1986, 1549.
- 348. Iino, Y.; Nitta, M. Bull. Chem. Soc. Jpn. 1988, 61, 2235.
- 349. Nitta, M.; Kobayashi, T. Chem. Lett. 1986, 463.
- 350. Nitta, M.; Iino, Y.; Hara, E.; Kobayashi, T. J. Chem. Soc., Perkin Trans. I 1989, 51.
- 351. Iino, Y.; Hara, E.; Nitta, M. Bull. Chem. Soc. Jpn. 1989, 62, 1913.
- 352. Nitta, M.; Iino, Y. J. Chem. Soc., Perkin Trans. I 1990, 435.
- 353. Kanomata, N.; Nitta, M. Tetrahedron Lett. 1988, 29, 5957.
- 354. Saito, T.; Nakane, M.; Endo, M.; Yamashita, H.; Oyamada, Y.; Motoki, S. Chem. Lett. 1986, 135.
- 355. Molina, P.; Fresneda, P. M.; Hurtado, F. Synthesis 1987, 45.
- 356. Molina, P.; Fresneda, P. M.; Alarcón, F. Tetrahedron Lett. 1988, 29, 379.
- 357. Molina, P.; Fresneda, P. M. Synthesis 1989, 878.
- 358. Molina, P.; Tárrage, A.; José Lidón, M. J. Chem. Soc., Perkin Trans. I 1990, 1727.
- 359. Molina, P.; Fresneda, P. M. Ibid. 1988, 1819.
- 360. Molina, P.; Arques, A.; Vinader, M. V. J. Org. Chem. 1988, 53, 4654.
- 361. Molina, P.; Arques, A.; Vinader, M. V.; Becher, J.; Brondum, K. Tetrahedron Lett. 1987, 28, 4451.
- 362. Wamhoff, H.; Muhr, J. Synthesis 1988, 919.
- 363. Molina, P.; Alajarin, M.; Arques, A.; Benzal, R. J. Chem. Soc., Perkin Trans. I 1982, 351.
- 364. Molina, P.; Alajarin, M.; Pérez de Vega, M. J. Liebigs Ann. Chem. 1986, 1540.
- 365. Rossi, E.; Celentano, G.; Stradi, R.; Strada, A. Tetrahedron Lett. 1990, 31, 903.
- 366. Aubert, T.; Tabyaoui, B.; Farnier, M.; Guilard, R. Synthesis 1988, 742.
- 367. Jung, M. E.; Shishido, K.; Light, L.; Davis, L. Tetrahedron Lett. 1981, 46, 4607.
- 368. Bödeker, J.; Courault, K.; Köckritz, A.; Köckritz, P. J. prakt. Chem. 1983, 325, 463.
- 369. Bruché, L.; Garanti, L.; Zecchi, G. Synthesis 1985, 304.
- 370. Bruché, L.; Garanti, L.; Zecchi, G. J. Chem. Soc., Perkin Trans. I 1986, 2177.
- 371. Bruché, L.; Garanti, L.; Zecchi, G. Synthesis 1986, 772.
- 372. Molina, P.; Alajarin, M.; Saez, J. R.; Foces-Foces, M. C.; Cano, F. H.; Claramunt, R. M.; Elguero, J. J. Chem. Soc., Perkin Trans. I 1986, 2037.
- 373. Molina, P.; Arques, A.; Vinader, M. V. Synthesis 1990, 469.
- 374. Molina, P.; Alajarin, M.; Saez, J. R. Ibid. 1984, 983.
- 375. Molina, P.; Alajarin, M.; Vidal, A. Tetrahedron Lett. 1988, 31, 3849.
- 376. Aubert, T.; Farnier, M.; Guilard, R. Synthesis 1990, 149.
- 377. Molina, P.; Lorenzo, A.; Aller, E. Ibid. 1989, 843.